Classification of Bladder Emptying Patterns by LSTM Neural Network Trained Using Acoustic Signatures
Abstract
:1. Introduction
2. A New Non-Invasive Method for Uroflow Measurement
3. Uroflow Identification with Sound Radiations
4. Patients and Inclusion Criteria
5. Statistical Feature Extractions from Sounds
6. LSTM Network for the LUTS Health Monitoring
7. Results
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nordling, J. The aging bladder—A significant but underestimated role in the development of lower urinary tract symptoms. Exp. Gerontol. 2002, 37, 991–999. [Google Scholar] [CrossRef]
- Madersbacher, S.; Pycha, A.; Schatzl, G.; Mian, C.; Klingler, C.H.; Marberger, M. The aging lower urinary tract: A comparative urodynamic study of men and women. Urology 1998, 51, 206–212. [Google Scholar] [CrossRef]
- Araki, I.; Zakoji, H.; Komuro, M.; Furuya, Y.; Fukasawa, M.; Takihana, Y.; Takeda, M. Lower urinary tract symptoms in men and women without underlying disease causing micturition disorder: A cross-sectional study assessing the natural history of bladder function. J. Urol. 2003, 170, 1901–1904. [Google Scholar] [CrossRef] [PubMed]
- Krhut, J.; Gartner, M.; Sykora, R.; Hurtik, P.; Burda, M.; Lunacek, L.; Zvarova, K.; Zvara, P. Comparison between uroflowmetry and sonouroflowmetry in recording of urinary flow in healthy men. Int. J. Urol. 2015, 22, 761–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doane, J.; Flynn, M.; Archibald, M.; Ramirez, D.; Conroy, M.B.; Stults, B. Unattended automated office blood pressure measurement: Time efficiency and barriers to implementation/utilization. J. Clin. Hypertens. 2020, 22, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Porru, D.; Scarpa, R.M.; Prezioso, D.; Bertaccini, A.; Rizzi, C.A.; Grp, H.S. Home and office uroflowmetry for evaluation of LUTS from benign prostatic enlargement. Prostate Cancer Prostatic Dis. 2005, 8, 45–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, W.A.; Kim, S.H.; Kim, S.; Joung, J.Y.; Chung, J.; Lee, K.H.; Lee, S.J.; Seo, H.K. Changes in Urination According to the Sound of Running Water Using a Mobile Phone Application. PLoS ONE 2015, 10, e0126798. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Chung, Y.; Park, J. Development of a Flowmeter Using Vibration Interaction between Gauge Plate and External Flow Analyzed by LSTM. Sensors 2020, 20, 5922. [Google Scholar] [CrossRef] [PubMed]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Physica D 2020, 404. [Google Scholar] [CrossRef] [Green Version]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef] [PubMed]
- Zwicker, E.; Fastl, H. Psychoacoustics. Facts and Models. Phys. Today 1999, 54, 64–65. [Google Scholar]
- ISO. ISO 532-1-2017 Acoustics-Methods for Calculating Loudness-Part1: Zwicker Method; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- ISO. ISO 532-2-2017 Acoustics-Methods for Calculating Loudness-Part2: Moor-Glasberg Method; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- Nowak, J.; Taspinar, A.; Scherer, R. LSTM recurrent neural networks for short text and sentiment classification. In Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 11–15 June 2017; pp. 553–562. [Google Scholar]
- Koiso, K.; Nemoto, R.; Ohtani, M. Urophonographic Studies of Benign Prostatic Hypertrophy. J. Urol. 1991, 145, 1071–1077. [Google Scholar] [CrossRef]
- Zvarova, K.; Ursiny, M.; Giebink, T.; Liang, K.; Blaivas, J.G.; Zvara, P. Recording urinary flow and lower urinary tract symptoms using sonouroflowmetry. Can. J. Urol. 2011, 18, 5689–5694. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, J.B.; Jacobsen, H.L.; Bagi, P.; Hvarnes, H.; Colstrup, H. Home uroflowmetry by means of the Da Capo (TM) home uroflowmeter. Eur. Urol. 1998, 33, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Boci, R.; Fall, M.; Walden, M.; Knutson, T.; Dahlstrand, C. Home uroflowmetry: Improved accuracy in outflow assessment. Neurourol. Urodynam. 1999, 18, 25–32. [Google Scholar] [CrossRef]
- Rosette, J.D.L.; Witjes, W.P.; Debruyne, F.M.; Kersten, P.L.; Wijkstra, H. Improved reliability of uroflowmetry investigations: Results of a portable home-based uroflowmetry study. Brit. J. Urol. 1996, 78, 385–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heesakkers, J.; Farag, F.; Pantuck, A.; Moore, K.; Radziszewski, P.; Lucas, M. Applicability of a Disposable Home Urinary Flow Measuring Device as a Diagnostic Tool in the Management of Males with Lower Urinary Tract Symptoms. Urol. Int. 2012, 89, 166–172. [Google Scholar] [CrossRef] [PubMed]
Age | 51–60 | 51–70 | ≥71 |
5 | 10 | 12 | |
Type | A | B | C |
15 | 6 | 6 |
Gender | Age | Voiding Volume | Voiding Time | Maximum Flowrate | Average Flowrate | Classification Rate | Doctor’s Diagnosis | ||
---|---|---|---|---|---|---|---|---|---|
A | B | C | |||||||
M | 70 | 119.9 | 13.3 | 14.8 | 8.6 | 0.9990 | 0.0010 | 0.0000 | Normal |
M | 58 | 340.3 | 42.3 | 20.8 | 8.5 | 0.9979 | 0.0021 | 0.0000 | |
F | 61 | 99.1 | 3.5 | 44.4 | 20.2 | 0.9995 | 0.0005 | 0.0000 | |
M | 69 | 275.2 | 26 | 17 | 10.5 | 0.9992 | 0.0008 | 0.0000 | |
M | 66 | 172 | 16.8 | 18.1 | 9.3 | 0.9994 | 0.0006 | 0.0000 | |
M | 58 | 555 | 54 | 32.6 | 10.8 | 0.9996 | 0.0004 | 0.0000 | |
M | 89 | 50.5 | 19 | 4.7 | 2.9 | 0.0000 | 0.9983 | 0.0017 | LUTS or IDC |
M | 77 | 187.8 | 42.5 | 9 | 4.8 | 0.0001 | 0.9999 | 0.0001 | |
M | 66 | 63.9 | 9.3 | 9.2 | 5.9 | 0.0008 | 0.9991 | 0.0001 | |
M | 81 | 43.9 | 14 | 5.8 | 3.1 | 0.0001 | 0.9998 | 0.0001 | |
M | 68 | 195.2 | 44.8 | 9.1 | 4.5 | 0.0000 | 0.9998 | 0.0002 | |
M | 79 | 320 | 64.8 | 13.9 | 5.2 | 0.0002 | 0.9998 | 0.0000 | |
M | 61 | 495.3 | 71 | 13.6 | 6.8 | 0.0002 | 0.9997 | 0.0001 | |
M | 72 | 110.6 | 19 | 9.4 | 5.3 | 0.0000 | 0.9998 | 0.0002 | |
M | 71 | 99.1 | 50.8 | 6.8 | 2.8 | 0.0001 | 0.9993 | 0.0006 | |
M | 69 | 185 | 73.3 | 12.8 | 4.2 | 0.0000 | 0.9998 | 0.0002 | |
M | 71 | 123.9 | 36.5 | 7.4 | 3.5 | 0.0001 | 0.9995 | 0.0004 | |
M | 63 | 281.9 | 47.8 | 17.7 | 7.7 | 0.0005 | 0.9995 | 0.0000 | |
M | 81 | 76.3 | 20.3 | 8.7 | 3.9 | 0.0000 | 0.9999 | 0.0001 | |
M | 60 | 171.5 | 28.3 | 17.1 | 6.4 | 0.0001 | 0.9998 | 0.0001 | |
M | 74 | 172.3 | 49.8 | 8.6 | 3.6 | 0.0002 | 0.9997 | 0.0001 | |
M | 69 | 106.5 | 34.5 | 8.7 | 4 | 0.0000 | 0.0004 | 0.9996 | BPH or urethral stenosis |
M | 51 | 71.9 | 49.8 | 7.4 | 2.7 | 0.0000 | 0.0002 | 0.9998 | |
M | 85 | 33.7 | 60.8 | 3.5 | 1.9 | 0.0000 | 0.0000 | 1.0000 | |
M | 83 | 50.3 | 19.8 | 4.9 | 2.2 | 0.0000 | 0.0003 | 0.9997 | |
M | 75 | 223.5 | 93 | 5 | 2.6 | 0.0000 | 0.0004 | 0.9996 | |
F | 72 | 266 | 61 | 8.3 | 4.3 | 0.0000 | 0.0043 | 0.9957 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, J.; Chung, Y.; Kim, W.; Heo, Y.; Jeon, J.; Hoh, J.; Park, J.; Jo, J. Classification of Bladder Emptying Patterns by LSTM Neural Network Trained Using Acoustic Signatures. Sensors 2021, 21, 5328. https://doi.org/10.3390/s21165328
Jin J, Chung Y, Kim W, Heo Y, Jeon J, Hoh J, Park J, Jo J. Classification of Bladder Emptying Patterns by LSTM Neural Network Trained Using Acoustic Signatures. Sensors. 2021; 21(16):5328. https://doi.org/10.3390/s21165328
Chicago/Turabian StyleJin, Jie, Youngbeen Chung, Wanseung Kim, Yonggi Heo, Jinyong Jeon, Jeongkyu Hoh, Junhong Park, and Jungki Jo. 2021. "Classification of Bladder Emptying Patterns by LSTM Neural Network Trained Using Acoustic Signatures" Sensors 21, no. 16: 5328. https://doi.org/10.3390/s21165328
APA StyleJin, J., Chung, Y., Kim, W., Heo, Y., Jeon, J., Hoh, J., Park, J., & Jo, J. (2021). Classification of Bladder Emptying Patterns by LSTM Neural Network Trained Using Acoustic Signatures. Sensors, 21(16), 5328. https://doi.org/10.3390/s21165328