A Personalized Computer-Aided Diagnosis System for Mild Cognitive Impairment (MCI) Using Structural MRI (sMRI)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preprocessing and Brain Cortex Segmentation
2.2.2. Brain Cortex Reconstruction and Analysis
Algorithm 1 The MC algorithm and the calculation of the principal curvature directions and values. |
Input: The dataset of the scalar volumetric Output: The directions and values of the principle curvature Steps:
|
2.2.3. Shape Feature Fusion
Algorithm 2 The algorithm for feature fusion based on CCA technique. |
Input: Two matrices of the features, and , of the extracted () features for the n samples. Output: The fused features in the form of matrix. Steps:
Concatenate the features-based transformed vectors to obtain the feature fusion vector through:
|
2.2.4. Diagnosis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
CNS | central nervous system |
APP | amyloid- precursor protein |
BACE1 | secretase 1 |
PSEN1 | presenilin 1 |
PSEN2 | presenilin 2 |
APH1 | anterior pharynxdefective 1 |
MCI | mild cognitive impairment |
PET | positron emission tomography |
CSF | cerebrospinal fluid |
A | amyloid beta |
sMRI | structural magnetic resonance imaging |
FDG-PET | 2-[18F] fluoro-2-deoxy-d-glucose |
NC | normal control |
CAD | computer-assisted diagnostic |
ICA | independent component analysis |
SVM | support vector machines |
GA | genetic algorithms |
sMCI | stable MCI |
pMCI | progressive MCI |
kSVM-DT | kernel support vector machine decision tree |
MIL | multiple instance learning |
OPLS | orthogonal partial least squares to latent structures |
RDoC | research domain criteria |
ADNI | Alzheimer’s disease neuroimaging initiative |
MMSE | mini mental state examination |
CDR | clinical dementia rating |
MC | marching cubes |
AAL | automated anatomical labeling |
CCA | canonical correlation analysis |
MNI | Montreal Neurological Institute |
AC-PC | anterior and posterior commissures |
pSVM | probabilistic support vector machines |
BNTTOTAL | total number correct on Boston Naming Test |
BNTSPONT | number of spontaneously given correct responses |
ADAS | Alzheimer’s Disease Assessment Scale-Cognitive Behavior |
FAQTOTAL | functional assessment questionnaire total score |
CONMCXLA | number of targets hit on ADNI numbers cancellation task |
RBF | radial basis function |
KNN | K nearest neighbors |
PCA | principal component analysis |
References
- Disease and Dementia. What Is Alzheimer’s? 2019. Available online: https://www.alz.org/alzheimers-dementia/what-is-alzheimers/ (accessed on 23 January 2019).
- Brown, D. Brain Diseases and Metalloproteins; Pan Stanford: Singapore, 2013. [Google Scholar]
- Jenner, P.; Goate, A.; Ashall, F. Pathobiology of Alzheimer’s Disease; Elsevier Science: New York, NY, USA, 1995. [Google Scholar]
- Gauthier, S. Clinical Diagnosis and Management of Alzheimer’s Disease; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Castellani, R.J.; Plascencia-Villa, G.; Perry, G. The amyloid cascade and Alzheimer’s disease therapeutics: Theory versus observation. Lab. Investig. 2019, 99, 958–970. [Google Scholar] [CrossRef] [PubMed]
- Kidd-Madison, N. Alzheimer’s Disease: Living with John, Caring for a Love One; Xlibris US: Bloomington, IN, USA, 2014. [Google Scholar]
- Osborn, A.G.; Salzman, K.L.; Jhaveri, M.D.; Barkovich, A.J. Diagnostic Imaging: Brain E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Johnson, K.A.; Fox, N.C.; Sperling, R.A.; Klunk, W.E. Brain imaging in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006213. [Google Scholar] [CrossRef]
- Jack, C.R.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010, 9, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Khedher, L.; Illán, I.A.; Górriz, J.M.; Ramírez, J.; Brahim, A.; Meyer-Baese, A. Independent Component Analysis-Support Vector Machine-Based Computer-Aided Diagnosis System for Alzheimer’s with Visual Support. Int. J. Neural Syst. 2017, 27, 1650050. [Google Scholar] [CrossRef]
- Fang, C.; Li, C.; Cabrerizo, M.; Barreto, A.; Andrian, J.; Loewenstein, D.; Duara, R.; Adjouadi, M. A Novel Gaussian Discriminant Analysis-based Computer Aided Diagnosis System for Screening Different Stages of Alzheimer. In Proceedings of the 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE), Washington, DC, USA, 23–25 October 2017; pp. 279–284. [Google Scholar]
- Beheshti, I.; Demirel, H.; Matsuda, H.; Alzheimer’s Disease Neuroimaging Initiative. Classification of Alzheimer’s disease and prediction of mild cognitive impairment-to-Alzheimer’s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Comput. Biol. Med. 2017, 83, 109–119. [Google Scholar] [CrossRef]
- Missonnier, P.; Deiber, M.P.; Gold, G.; Herrmann, F.; Millet, P.; Michon, A.; Fazio-Costa, L.; Ibanez, V.; Giannakopoulos, P. Working memory load–related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment. Neuroscience 2007, 150, 346–356. [Google Scholar] [CrossRef]
- Wang, P.N.; Liu, H.C.; Lirng, J.F.; Lin, K.N.; Wu, Z.A. Accelerated hippocampal atrophy rates in stable and progressive amnestic mild cognitive impairment. Psychiatry Res. Neuroimaging 2009, 171, 221–231. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Dong, Z. Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Prog. Electromagn. Res. 2014, 144, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Dong, Z.; Phillips, P.; Wang, S.; Ji, G.; Yang, J.; Yuan, T.F. Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front. Comput. Neurosci. 2015, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Tong, T.; Wolz, R.; Gao, Q.; Guerrero, R.; Hajnal, J.V.; Rueckert, D. Multiple instance learning for classification of dementia in brain MRI. Med. Image Anal. 2014, 18, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Westman, E.; Simmons, A.; Zhang, Y.; Muehlboeck, J.S.; Tunnard, C.; Liu, Y.; Collins, L.; Evans, A.; Mecocci, P.; Vellas, B.; et al. Multivariate analysis of MRI data for Alzheimer’s disease, mild cognitive impairment and healthy controls. Neuroimage 2011, 54, 1178–1187. [Google Scholar] [CrossRef]
- American College of Radiology. Alzheimer’s Disease. 2021. Available online: https://www.radiologyinfo.org/en/info/alzheimers (accessed on 19 June 2021).
- Peters, A.; Morrison, J. Cerebral Cortex: Neurodegenerative and Age-Related Changes in Structure and Function of Cerebral Cortex; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Cechetto, D.; Weishaupt, N. The Cerebral Cortex in Neurodegenerative and Neuropsychiatric Disorders: Experimental Approaches to Clinical Issues; Elsevier Science: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Apostolova, L.G.; Thompson, P.M. Mapping progressive brain structural changes in early Alzheimer’s disease and mild cognitive impairment. Neuropsychologia 2008, 46, 1597–1612. [Google Scholar] [CrossRef] [Green Version]
- Alzheimer’s Disease Neuroimaging Initiative. ADNI|Study Design. 2019. Available online: http://adni.loni.usc.edu/study-design/ (accessed on 22 May 2021).
- Ashburner, J.; Friston, K.J. Unified segmentation. Neuroimage 2005, 26, 839–851. [Google Scholar] [CrossRef]
- The Wellcome Centre for Human Neuroimaging. SPM12-Statistical Parametric Mapping. Filionuclacuk. 2017. Available online: https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ (accessed on 28 January 2019).
- Hansen, C.; Johnson, C. Visualization Handbook; Elsevier Science: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Newman, T.S.; Yi, H. A survey of the marching cubes algorithm. Comput. Graph. 2006, 30, 854–879. [Google Scholar] [CrossRef]
- Ismail, M.; Soliman, A.; ElTanboly, A.; Switala, A.; Mahmoud, M.; Khalifa, F.; Gimel’farb, G.; Casanova, M.F.; Keynton, R.; El-Baz, A. Detection of white matter abnormalities in MR brain images for diagnosis of autism in children. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 6–9. [Google Scholar]
- Su, S.S.; Chen, K.W.; Huang, Q. Discriminant analysis in the study of Alzheimer’s disease using feature extractions and support vector machines in positron emission tomography with 18 F-FDG. J. Shanghai Jiaotong Univ. (Sci.) 2014, 19, 555–560. [Google Scholar] [CrossRef]
- Salas-Gonzalez, D.; Segovia, F.; Martínez-Murcia, F.J.; Lang, E.W.; Gorriz, J.M.; Ramırez, J. An optimal approach for selecting discriminant regions for the diagnosis of Alzheimer’s disease. Curr. Alzheimer Res. 2016, 13, 838–844. [Google Scholar] [CrossRef]
- Vemuri, P.; Jack, C.R. Role of structural MRI in Alzheimer’s disease. Alzheimer’s Res. Ther. 2010, 2, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghighat, M.; Abdel-Mottaleb, M.; Alhalabi, W. Fully automatic face normalization and single sample face recognition in unconstrained environments. Expert Syst. Appl. 2016, 47, 23–34. [Google Scholar] [CrossRef]
- Yaffe, K. Chronic Medical Disease and Cognitive Aging: Toward a Healthy Body and Brain; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Anderson, N.; Murphy, K.; Troyer, A. Living with Mild Cognitive Impairment: A Guide to Maximizing Brain Health and Reducing Risk of Dementia; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Lopez, O.L. Mild cognitive impairment. Contin. Lifelong Learn. Neurol. 2013, 19, 411–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haidekker, M.A. Medical Imaging Technology; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Smith, N.B.; Webb, A. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Ballabh, P.; Back, S.A. Advances in Neonatal Neurology. Clin. Perinatol. 2014, 41, xvii–xix. [Google Scholar] [CrossRef] [PubMed]
- Leandrou, S.; Petroudi, S.; Kyriacou, P.A.; Reyes-Aldasoro, C.C.; Pattichis, C.S. Quantitative MRI brain studies in mild cognitive impairment and Alzheimer’s disease: A methodological review. IEEE Rev. Biomed. Eng. 2018, 11, 97–111. [Google Scholar] [CrossRef]
- Varghese, T.; Sheelakumari, R.; James, J.S.; Mathuranath, P.S. A review of neuroimaging biomarkers of Alzheimer’s disease. Neurol. Asia 2013, 18, 239–248. [Google Scholar] [PubMed]
- Khedher, L.; Ramírez, J.; Górriz, J.M.; Brahim, A. Automatic classification of segmented MRI data combining independent component analysis and support vector machines. Innov. Med. Healthc. 2015, 207, 271–279. [Google Scholar]
- Nho, K.; Risacher, S.L.; Crane, P.K.; DeCarli, C.; Glymour, M.M.; Habeck, C.; Kim, S.; Lee, G.J.; Mormino, E.; Mukherjee, S.; et al. Voxel and surface-based topography of memory and executive deficits in mild cognitive impairment and Alzheimer’s disease. Brain Imaging Behav. 2012, 6, 551–567. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, L.E.; Carle, A.C.; Mackin, R.S.; Harvey, D.; Mukherjee, S.; Insel, P.; Curtis, S.M.; Mungas, D.; Crane, P.K. A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging Behav. 2012, 6, 517–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, L.Q.; Gross, A.L.; McLaren, D.G.; Pa, J.; Johnson, J.K.; Mitchell, M.; Manly, J.J. Confirmatory factor analysis of the ADNI Neuropsychological Battery. Brain Imaging Behav. 2012, 6, 528–539. [Google Scholar] [CrossRef] [Green Version]
- Ito, K.; Hutmacher, M.; Corrigan, B. Modeling of Functional Assessment Questionnaire (FAQ) as continuous bounded data from the ADNI database. J. Pharmacokinet. Pharmacodyn. 2012, 39, 601–618. [Google Scholar] [CrossRef] [PubMed]
- Mohs, R.C.; Knopman, D.; Petersen, R.C.; Ferris, S.H.; Ernesto, C.; Grundman, M.; Sano, M.; Bieliauskas, L.; Geldmacher, D.; Clark, C.; et al. Development of cognitive instruments for use in clinical trials of antidementia drugs: Additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. Alzheimer Dis. Assoc. Disord. 1997, 11, 13–21. [Google Scholar] [CrossRef]
- Battista, P.; Salvatore, C.; Castiglioni, I. Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: A machine learning study. Behav. Neurol. 2017, 2017, 1850909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
60 Normal Subject | 86 MCI | |
---|---|---|
Age (Mean ± std) | 75.49 ± 4.78 | 73.98 ± 7.72 |
Gender | ||
Women | 38 | 33 |
Men | 22 | 54 |
MMSE scores | 24–30 | 24–30 |
CDR | 0 | 0.5 |
Brain Region | Behavioral Task | ADNI Category | r-Value | p-Value |
---|---|---|---|---|
Right Angular Gyrus | Language | BNTTOTAL | 0.37 | 0.001 |
Right Angular Gyrus | Language | BNTSPONT | 0.36 | 0.001 |
Left Angular Gyrus | Language | BNTTOTAL | −0.35 | 0.002 |
Left Angular Gyrus | Language | BNTSPONT | −0.37 | 0.001 |
Right Middle Cingulum | Language | BNTTOTAL | −0.29 | 0.010 |
Right Middle Cingulum | Language | BNTSPONT | −0.31 | 0.006 |
Right Inferior Frontal Opercularis | Cognitive | TOTAL11 (ADAS) | −0.32 | 0.004 |
Left Parahippocampal Gyrus | Adaptive | FAQTOTAL | −0.30 | 0.007 |
Left Parahippocampal Gyrus | Visual Spatial | CONMCXLA | 0.30 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Gamal, F.E.-Z.A.; Elmogy, M.; Mahmoud, A.; Shalaby, A.; Switala, A.E.; Ghazal, M.; Soliman, H.; Atwan, A.; Alghamdi, N.S.; Barnes, G.N.; et al. A Personalized Computer-Aided Diagnosis System for Mild Cognitive Impairment (MCI) Using Structural MRI (sMRI). Sensors 2021, 21, 5416. https://doi.org/10.3390/s21165416
El-Gamal FE-ZA, Elmogy M, Mahmoud A, Shalaby A, Switala AE, Ghazal M, Soliman H, Atwan A, Alghamdi NS, Barnes GN, et al. A Personalized Computer-Aided Diagnosis System for Mild Cognitive Impairment (MCI) Using Structural MRI (sMRI). Sensors. 2021; 21(16):5416. https://doi.org/10.3390/s21165416
Chicago/Turabian StyleEl-Gamal, Fatma El-Zahraa A., Mohammed Elmogy, Ali Mahmoud, Ahmed Shalaby, Andrew E. Switala, Mohammed Ghazal, Hassan Soliman, Ahmed Atwan, Norah Saleh Alghamdi, Gregory Neal Barnes, and et al. 2021. "A Personalized Computer-Aided Diagnosis System for Mild Cognitive Impairment (MCI) Using Structural MRI (sMRI)" Sensors 21, no. 16: 5416. https://doi.org/10.3390/s21165416
APA StyleEl-Gamal, F. E. -Z. A., Elmogy, M., Mahmoud, A., Shalaby, A., Switala, A. E., Ghazal, M., Soliman, H., Atwan, A., Alghamdi, N. S., Barnes, G. N., & El-Baz, A. (2021). A Personalized Computer-Aided Diagnosis System for Mild Cognitive Impairment (MCI) Using Structural MRI (sMRI). Sensors, 21(16), 5416. https://doi.org/10.3390/s21165416