SG-WAS: A New Wireless Autonomous Night Sky Brightness Sensor
Abstract
:1. Introduction
2. SG-WAS Photometer
- A TSL237 irradiance-to-frequency converter sensor.
- An optical dichroic that determines the spectral response of the device.
- A concentrator optic that focuses the light and determines the effective field of view (FOV).
- An infrared (IR) sensor that measures the sky temperature.
- Two microcontrollers that convert the frequencies measured into an average magnitude and uncertainty, store and send the information, and control the power-saving strategy.
- A communication unit (LoRa, WiFi, LTE-M) customizable to the place where it is installed.
2.1. Wireless
- M2 is connected to the sensor, takes measurements, and stores them temporarily.
- M1 handles timing, storage, data processing, and communication. It is connected to M2 and the central hub (GateWay in LoRa version or server in WiFi/LTE-M version).
- Every 5 min, M1 calculates the average and instrumental uncertainty of the ten measurements taken by M2 in the previous slot, stores them, and commands M2 to take a new set of measures.
- In the corresponding slot, depending on the device version, M1 encrypts, and sends the measurements stored in its memory to the central hub. These include the average and standard deviation of the ten continuous NSB measurements, ambient and sky temperature, battery charge, and communication signal strength.
2.1.1. LoRa Version
2.1.2. WiFi and LTE-M Version
2.2. Autonomous
2.3. Sensor
2.3.1. Linearity
2.3.2. Angular Response
2.3.3. Transmittance
3. Results and Discussion
3.1. SG-WAS Astronomical Magnitudes and Uncertainties
3.2. Sky Integrating Sphere (SIS) Calibration Method
3.3. SG-WAS Calibration Error
3.4. SG-WAS Instrumental Error
3.5. Night Sky Brightness Measurements
3.6. Light Pollution Laboratory: IoT-EELab
4. Conclusions
- SG-WAS is the first wireless NSB sensor to communicate via LoRa, WiFI, or LTE-M and be powered by solar energy. A measurement every 5 min is taken continuously and sent using a Time Division Multiple Access algorithm to avoid packet collision.
- The device recharges to peak voltage in just 4 h with direct solar irradiance after a full night of operation. It can stay up to 20 days in darkness while taking measurements, subsequently remain in hibernation for months before returning to operation once it is illuminated again.
- Its optical design is very similar to the TESS-W, with a FOV approximately 19 (FWHM) and a slightly less red spectral range, from 400 to 720 nm. The window has been removed to prevent condensation on the dichroic and increase transmittance.
- A new Sky Integrating Sphere (SIS) calibration method (patent-pending) has been designed and demonstrated to achieve calibration errors in TESS-W and SG-WAS below 0.02 mag/arcsec.
- The robustness to adverse weather conditions and the stability of its measurements have been demonstrated in field tests. Taking the average and uncertainty of ten continuous measurements makes the NSB curves smoother and avoids spikes. Differences between simultaneous measurements of several SG-WAS photometers have been found to have a standard deviation of 0.01 mag/arcsec, several times smaller than their predecessors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hölker, F.; Wolter, C.; Perkin, E.K.; Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 2010, 25, 681–682. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J.; Bennie, J.; Davies, T.W.; Hopkins, J. The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biol. Rev. 2013, 88, 912–927. [Google Scholar] [CrossRef] [PubMed]
- Bennie, J.; Davies, T.W.; Cruse, D.; Gaston, K.J. Ecological effects of artificial light at night on wild plants. J. Ecol. 2016, 104, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Owens, A.C.; Lewis, S.M. The impact of artificial light at night on nocturnal insects: A review and synthesis. Ecol. Evol. 2018, 8, 11337–11358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The new world atlas of artificial night sky brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, H.; Brown, S.S.; Wong, K.W.; Stutz, J.; Elvidge, C.D.; Pollack, I.B.; Ryerson, T.B.; Dube, W.P.; Wagner, N.L.; Parrish, D.D. City lights and urban air. Nat. Geosci. 2011, 4, 730–731. [Google Scholar] [CrossRef]
- de Miguel, A.S.; Kyba, C.C.M.; Zamorano, J.; Gallego, J.; Gaston, K.J. The nature of the diffuse light near cities detected in nighttime satellite imagery. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G. Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef] [Green Version]
- Bará, S. Characterizing the zenithal night sky brightness in large territories: How many samples per square kilometre are needed? Mon. Not. R. Astron. Soc. 2018, 473, 4164–4173. [Google Scholar] [CrossRef] [Green Version]
- Alarcon, M.R.; Serra-Ricart, M.; Lemes-Perera, S.; Mallorquín, M. Natural Night Sky Brightness during Solar Minimum. Astron. J. 2021, 162, 25. [Google Scholar] [CrossRef]
- Aubé, M.; Simoneau, A.; Muñoz-Tuñón, C.; Díaz-Castro, J.; Serra-Ricart, M. Restoring the night sky darkness at Observatorio del Teide: First application of the model Illumina version 2. Mon. Not. R. Astron. Soc. 2020, 497, 2501–2516. [Google Scholar] [CrossRef]
- Cinzano, P. Report on Sky Quality Meter, Version L. 2007. Available online: http://unihedron.com/projects/sqm-l/sqmreport2.pdf (accessed on 28 June 2021).
- Zamorano, J.; García, C.; Tapia, C.; de Miguel, A.S.; Pascual, S.; Gallego, J. STARS4ALL Night Sky Brightness Photometer. Int. J. Sustain. Light. 2017, 18, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Bará, S.; Tapia, C.; Zamorano, J. Absolute Radiometric Calibration of TESS-W and SQM Night Sky Brightness Sensors. Sensors 2019, 19, 1336. [Google Scholar] [CrossRef] [Green Version]
- Hart, J.K.; Martinez, K. Environmental sensor networks: A revolution in the earth system science? Earth Sci. Rev. 2006, 78, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Vairamani, K.; Mathivanan, N.; Venkatesh, K.A.; Kumar, U.D. Environmental parameter monitoring using wireless sensor network. Instrum. Exp. Tech. 2013, 56, 468–471. [Google Scholar] [CrossRef]
- Zhang, P.; Sadler, C.M.; Lyon, S.A.; Martonosi, M. Hardware design experiences in ZebraNet. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA, 3–5 November 2004; pp. 227–238. [Google Scholar]
- Vera-Amaro, R.; Angeles, M.E.R.; Luviano-Juarez, A. Design and analysis of wireless sensor networks for animal tracking in large monitoring polar regions using phase-type distributions and single sensor model. IEEE Access 2019, 7, 45911–45929. [Google Scholar] [CrossRef]
- Awadallah, S.; Moure, D.; Torres-González, P. An internet of things (IoT) application on volcano monitoring. Sensors 2019, 19, 4651. [Google Scholar] [CrossRef] [Green Version]
- Alliance, L. A Technical Overview of LoRa and LoRaWAN; White Paper; 2015; Volume 20, Available online: https://www.tuv.com/content-media-files/master-content/services/products/1555-tuv-rheinland-lora-alliance-certification/tuv-rheinland-lora-alliance-certification-overview-lora-and-lorawan-en.pdf (accessed on 15 June 2021).
- Sornin, N.; Luis, M.; Eirich, T.; Kramp, T.; Hersent, O. LoRaWAN Specification; LoRa Alliance. 2015. Available online: https://osch.oss-cn-shanghai.aliyuncs.com/blogContentFileSnapshot/1556464676588.pdf (accessed on 28 June 2021).
- Miao, G.; Zander, J.; Sung, K.W.; Slimane, S.B. Fundamentals of Mobile Data Networks; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar] [CrossRef]
- TSL237 High-Sensitivity Light-to-Frequency Converter. March 2018. Available online: https://ams.com/documents/20143/36005/TSL237_DS000156_3-00.pdf/4aa35672-5c5e-3bb7-4d6b-92f4c76a3531 (accessed on 28 June 2021).
- Pravettoni, M.; Strepparava, D.; Cereghetti, N.; Klett, S.; Andretta, M.; Steiger, M. Indoor calibration of Sky Quality Meters: Linearity, spectral responsivity and uncertainty analysis. J. Quant. Spectrosc. Radiat. Transf. 2016, 181, 74–86. [Google Scholar] [CrossRef]
- Bessell, M.S. UBVRI passbands. Publ. Astron. Soc. Pac. 1990, 102, 1181–1199. [Google Scholar] [CrossRef]
- Noll, S.; Kausch, W.; Barden, M.; Jones, A.M.; Szyszka, C.; Kimeswenger, S.; Vinther, J. An atmospheric radiation model for Cerro Paranal. I. The optical spectral range. Astron. Astrophys. 2012, 543, A92. [Google Scholar] [CrossRef]
- Cinzano, P. Night Sky Photometry with Sky Quality Metter. 2005. Available online: https://www.researchgate.net/publication/228399779_Night_Sky_Photometry_with_Sky_Quality_Meter (accessed on 28 June 2021).
- Zamorano, J.; Tapia, C.; García, C.; González, R.; de Miguel, A.S.; Bará, S.; Pascual, J.G.S.; García, L.; Consortium, T. Poster: Calibration of TESS, the STARS4ALL night sky brightness photometer. In Light Pollution: Theory, Modelling and Measurements; 2017; Available online: https://tess.stars4all.eu/ (accessed on 28 June 2021).
Frecuency (Hz) | Magnitude (mag/arcsec) | (Hz) | (mag/arcsec) |
---|---|---|---|
9.5563 | 17.989 | 0.0134 | 0.002 |
3.7564 | 19.003 | 0.0100 | 0.003 |
1.4833 | 20.012 | 0.0053 | 0.004 |
0.5918 | 21.009 | 0.0009 | 0.002 |
0.2350 | 22.013 | 0.0004 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarcon, M.R.; Puig-Subirà, M.; Serra-Ricart, M.; Lemes-Perera, S.; Mallorquín, M.; López, C. SG-WAS: A New Wireless Autonomous Night Sky Brightness Sensor. Sensors 2021, 21, 5590. https://doi.org/10.3390/s21165590
Alarcon MR, Puig-Subirà M, Serra-Ricart M, Lemes-Perera S, Mallorquín M, López C. SG-WAS: A New Wireless Autonomous Night Sky Brightness Sensor. Sensors. 2021; 21(16):5590. https://doi.org/10.3390/s21165590
Chicago/Turabian StyleAlarcon, Miguel R., Marta Puig-Subirà, Miquel Serra-Ricart, Samuel Lemes-Perera, Manuel Mallorquín, and César López. 2021. "SG-WAS: A New Wireless Autonomous Night Sky Brightness Sensor" Sensors 21, no. 16: 5590. https://doi.org/10.3390/s21165590
APA StyleAlarcon, M. R., Puig-Subirà, M., Serra-Ricart, M., Lemes-Perera, S., Mallorquín, M., & López, C. (2021). SG-WAS: A New Wireless Autonomous Night Sky Brightness Sensor. Sensors, 21(16), 5590. https://doi.org/10.3390/s21165590