A Machine Learning Method for Classification and Identification of Potato Cultivars Based on the Reaction of MOS Type Sensor-Array
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Extraction of Carbohydrates
2.3. Sugar Extraction
2.4. Electronic Nose Instrument
2.5. Statistical Analysis
2.5.1. Analysis of Variance
2.5.2. Chemometrics and Machine Learning Modelling
2.6. Model Evaluation Metrics
3. Results
3.1. Results of ANOVA for Sugar and Carbohydrate Content of Potato Cultivars
3.2. E-Nose Result
3.3. LDA and ANN Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Navarre, D.A.; Goyer, A.; Shakya, R. Chapter 14—Nutritional Value of Potatoes: Vitamin, Phytonutrient, and Mineral Con-tent. In Advances in Potato Chemistry and Technology; Singh, J., Kaur, L., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 395–424. [Google Scholar]
- FAO. The Future of Food and Agriculture; Organization of the United Nations: Rome, Italy, 2017; ISSN 2522-722X. [Google Scholar]
- Kaur, L.; Singh, N.; Sodhi, N.S. Some properties of potatoes and their starches II. Morphological, thermal and rheological properties of starches. Food Chem. 2002, 79, 183–192. [Google Scholar] [CrossRef]
- Gamarra, H.A.; Fuentes, S.; Morales, F.J.; Glover, R.; Malumphy, C.; Barker, I. Bemisia afer sensu lato, a Vector of Sweet potato chlorotic stunt virus. Plant Dis. 2010, 94, 510–514. [Google Scholar] [CrossRef] [Green Version]
- Rymuza, K.; Gugała, M.; Zarzecka, K.; Sikorska, A.; Findura, P.; Malaga-Toboła, U.; Kapela, K.; Radzka, E. The Effect of Light Exposures on the Content of Harmful Substances in Edible Potato Tuber. Agriculture 2020, 10, 139. [Google Scholar] [CrossRef]
- Hegde, V.; Misra, R.; Jeeva, M. Sweet Potato Diseases: Diagnosis and Management. Fruit Veg. Cereal Sci. Biotechnol. 2012, 6, 65–78. [Google Scholar]
- Patil, J.; Kumar, R. Advances in image processing for detection of plant diseases. J. Adv. Bioinform. Appl. Res. 2011, 2, 135–141. [Google Scholar]
- Unajan, M.C.; Tabada, W.M.; Gerardo, B.; Fajardo, A.C. Sweet Potato (Ipomoea batatas) Variety Recognizer Using Image Processing and Artificial Neural Network. In Proceedings of the 2017 Manila International Conference on “Trends in Engineering and Technology”, Manila, Philippines, 23–24 January 2017. [Google Scholar] [CrossRef] [Green Version]
- Gancarz, M. Correlation between cell size and blackspot of potato tuber parenchyma tissue after storage. Postharvest Biol. Technol. 2016, 117, 161–167. [Google Scholar] [CrossRef]
- Cooke, R.J. Gel electrophoresis for the identification of plant varieties. J. Chromatogr. A 1995, 698, 281–299. [Google Scholar] [CrossRef]
- Blahovec, J.; Lahodová, M. Storage induced changes of potato properties as detected by DMA. LWT 2013, 50, 444–450. [Google Scholar] [CrossRef]
- Gancarz, M. At harvest prediction of the susceptibility of potato varieties to blackspot after impact over long-term storage. Postharvest Biol. Technol. 2018, 142, 93–98. [Google Scholar] [CrossRef]
- Kumar, S.; Kaur, R. Plant Disease Detection using Image Processing—A Review. Int. J. Comput. Appl. 2015, 124, 6–9. [Google Scholar] [CrossRef]
- Gancarz, M.; Konstankiewicz, K.; Pawlak, K.; Zdunek, A. Analysis of plant tissue images obtained by confocal tandem scan-ning reflected light microscope. Int. Agrophys. 2007, 21, 49–53. [Google Scholar]
- Karami, H.; Rasekh, M.; Mirzaee-Ghaleh, E. Qualitative analysis of edible oil oxidation using an olfactory machine. J. Food Meas. Charact. 2020, 14, 2600–2610. [Google Scholar] [CrossRef]
- Karami, H.; Rasekh, M.; Ghaleh, E.M. Comparison of chemometrics and AOCS official methods for predicting the shelf life of edible oil. Chemom. Intell. Lab. Syst. 2020, 206, 104165. [Google Scholar] [CrossRef]
- Przybył, K.; Górna, K.; Wojcieszak, D.; Czekała, W.; Ludwiczak, A.; Przybylak, A.; Lewicki, A. The recognition of potato varieties using of neural image analysis method. In Proceedings of the Seventh International Conference on Digital Image Processing (ICDIP 2015), Los Angeles, CA, USA, 9–10 April 2015. [Google Scholar]
- Azizi, A.; Abbaspour-Gilandeh, Y.; Nooshyar, M.; Afkari-Sayah, A. Identifying Potato Varieties Using Machine Vision and Artificial Neural Networks. Int. J. Food Prop. 2015, 19, 618–635. [Google Scholar] [CrossRef]
- Mercurio, D.I.; Hernandez, A. Classification of Sweet Potato Variety using Convolutional Neural Network. In Proceedings of the 2019 IEEE 9th International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, 7 October 2019; pp. 120–125. [Google Scholar]
- Noordam, J.C.; Otten, G.W.; Timmermans, T.J.M.; Van Zwol, B.H. High-speed potato grading and quality inspection based on a color vision system. Mach. Vis. Appl. Ind. Insp. VIII 2000, 3966, 206–217. [Google Scholar] [CrossRef]
- Côté, M.-J.; LeDuc, L.; Reid, A. Evaluation of Simple Sequence Repeat (SSR) Markers Established in Europe as a Method for the Identification of Potato Varieties Grown in Canada. Am. J. Potato Res. 2013, 90, 340–350. [Google Scholar] [CrossRef]
- Rasekh, M.; Karami, H.; Wilson, A.; Gancarz, M. Classification and Identification of Essential Oils from Herbs and Fruits Based on a MOS Electronic-Nose Technology. Chemosensors 2021, 9, 142. [Google Scholar] [CrossRef]
- Gancarz, M.; Malaga-Toboła, U.; Oniszczuk, A.; Tabor, S.; Oniszczuk, T.; Gawrysiak-Witulska, M.; Rusinek, R. Detection and measurement of aroma compounds with the electronic nose and a novel method for MOS sensor signal analysis during the wheat bread making process. Food Bioprod. Process. 2021, 127, 90–98. [Google Scholar] [CrossRef]
- Rusinek, R.; Gawrysiak-Witulska, M.; Siger, A.; Oniszczuk, A.; Ptaszyńska, A.; Knaga, J.; Malaga-Toboła, U.; Gancarz, M. Effect of Supplementation of Flour with Fruit Fiber on the Volatile Compound Profile in Bread. Sensors 2021, 21, 2812. [Google Scholar] [CrossRef]
- Ikanone, C.; Oyekan, P. Effect of Boiling and Frying on the Total Carbohydrate, Vitamin C and Mineral Contents of Irish (Solanun tuberosum) and Sweet (Ipomea batatas) Potato Tubers. Niger. Food J. 2014, 32, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Rasekh, M.; Karami, H. Application of electronic nose with chemometrics methods to the detection of juices fraud. J. Food Process. Preserv. 2021, 45, e15432. [Google Scholar] [CrossRef]
- Rasekh, M.; Karami, H. E-nose coupled with an artificial neural network to detection of fraud in pure and industrial fruit juices. Int. J. Food Prop. 2021, 24, 592–602. [Google Scholar] [CrossRef]
- Karami, H.; Rasekh, M.; Mirzaee-Ghaleh, E. Application of the E-nose machine system to detect adulterations in mixed edible oils using chemometrics methods. J. Food Process. Preserv. 2020, 44, 14696. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Mohtasebi, S.S.; Ghasemi-Varnamkhasti, M.; Ahmadi, H. Application of MOS based electronic nose for the prediction of banana quality properties. Measurement 2016, 82, 105–114. [Google Scholar] [CrossRef]
- Lisiecka, K.; Wójtowicz, A.; Gancarz, M. Characteristics of Newly Developed Extruded Products Supplemented with Plants in a Form of Microwave-Expanded Snacks. Materials 2021, 14, 2791. [Google Scholar] [CrossRef] [PubMed]
- Jiarpinijnun, A.; Osako, K.; Siripatrawan, U. Visualization of volatomic profiles for early detection of fungal infection on storage Jasmine brown rice using electronic nose coupled with chemometrics. Measurement 2020, 157, 107561. [Google Scholar] [CrossRef]
- Viejo, C.G.; Tongson, E.; Fuentes, S. Integrating a Low-Cost Electronic Nose and Machine Learning Modelling to Assess Coffee Aroma Profile and Intensity. Sensors 2021, 21, 2016. [Google Scholar] [CrossRef]
- Bieganowski, A.; Józefaciuk, G.; Bandura, L.; Guz, Ł.; Łagód, G.; Franus, W. Evaluation of Hydrocarbon Soil Pollution Using E-Nose. Sensors 2018, 18, 2463. [Google Scholar] [CrossRef] [Green Version]
- Karami, H.; Rasekh, M.; Mirzaee-Ghaleh, E. Identification of olfactory characteristics of edible oil during storage period using metal oxide semiconductor sensors signal and ANN methods. J. Food Process. Preserv. 2021, e15749. [Google Scholar] [CrossRef]
- Stark, J.C.; Love, S.L.; Knowles, N.R. Tuber Quality. In Potato Production Systems; Stark, J., Thornton, M., Nolte, P., Eds.; Springer: Cham, Switzerland, 2020; pp. 479–497. [Google Scholar] [CrossRef]
- Gumul, D.; Ziobro, R.; Noga, M.; Sabat, R. Characterisation of five potato cultivars according to their nutritional and pro-health components. Acta Sci. Pol. Technol. Aliment. 2012, 10, 77–81. [Google Scholar]
- Rutolo, M.F.; Clarkson, J.P.; Covington, J.A. The use of an electronic nose to detect early signs of soft-rot infection in potatoes. Biosyst. Eng. 2018, 167, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Ayari, F.; Ghaleh, E.M.; Rabbani, H.; Heidarbeigi, K. Detection of the adulteration in pure cow ghee by electronic nose method (case study: Sunflower oil and cow body fat). Int. J. Food Prop. 2018, 21, 1670–1679. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Wang, J.; Yao, C.; Zhang, H.; Yu, Y. Quality grade identification of green tea using E-nose by CA and ANN. LWT 2008, 41, 1268–1273. [Google Scholar] [CrossRef]
- Rusinek, R.; Jelen, H.; Malaga-Tobola, U.; Molenda, M.; Gancarz, M. Influence of Changes in the Level of Volatile Compounds Emitted during Rapeseed Quality Degradation on the Reaction of MOS Type Sensor-Array. Sensors 2020, 20, 3135. [Google Scholar] [CrossRef] [PubMed]
- Marek, G.; Dobrzański, J.B.; Oniszczuk, T.; Combrzyński, M.; Ćwikła, D.; Rusinek, R. Detection and Differentiation of Volatile Compound Profiles in Roasted Coffee Arabica Beans from Different Countries Using an Electronic Nose and GC-MS. Sensors 2020, 20, 2124. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D. Application of a conductive polymer electronic nose device to identify aged woody samples. In Proceedings of the Third International IARIA Conference on Sensor Device Technologies and Applications, Rome, Italy, 19–24 August 2012; Yurish, S., Chilibon, I., Carvalho, V., Ducouret, S.G., Eds.; Xpert Publishing Services: Wilmington, DE, USA, 2012; pp. 77–82. [Google Scholar]
- Wilson, A.; Lester, D.; Oberle, C. Application of conductive polymer analysis for wood and woody plant identifications. For. Ecol. Manag. 2005, 209, 207–224. [Google Scholar] [CrossRef]
- Wilson, A.D. Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry. Sensors 2013, 13, 2295–2348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, A.D.; Baietto, M. Applications and Advances in Electronic-Nose Technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef]
Variety | Absorption Wavelength (nm) | Carbohydrate Content (μg/mL) | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | |
Sprit | 0.780 | 0.793 | 0.840 | 258 | 262 | 278 |
Agria | 0.492 | 0.543 | 0.573 | 165 | 181 | 191 |
Jelly | 0.675 | 0.714 | 0.761 | 223 | 236 | 252 |
Sante | 0.804 | 0.808 | 0.901 | 265 | 268 | 297 |
Marfona | 0.401 | 0.461 | 0.561 | 136 | 155 | 187 |
Row | Sensor Name | Detection Ranges (ppm) | Main Applications (Gas Detector) |
---|---|---|---|
1 | MQ9 | 10–1000 and 100–10,000 | CO and combustible gas |
2 | MQ4 | 300–100 | Urban gases and methane |
3 | MQ135 | 10–10,000 | Steam ammonia, benzene, sulfide |
4 | MQ8 | 100–1000 | Hydrogen |
5 | TGS2620 | 50–5000 | Alcohol, steam organic solvents |
6 | MQ136 | 1–200 | Sulfur dioxide (SO2) |
7 | TGS813 | 500–10,000 | CH4, C3H8, C4H10 |
8 | TGS822 | 50–5000 | Steam organic solvents |
9 | MQ3 | 10–300 | Alcohol |
Model | Variety | Agria | Sprit | Jelly | Sante | Marafona | |
---|---|---|---|---|---|---|---|
LDA | Agria | 15 20% | 0 0% | 0 0% | 0 0% | 0 0% | 100% 0% |
Sprit | 0 0% | 15 20% | 0 0% | 0 00% | 0 0% | 100% 0% | |
Jelly | 0 0% | 0 0% | 15 20% | 0 0% | 0 0% | 100% 0% | |
Sante | 0 0% | 0 0% | 0 0% | 15 20% | 0 0% | 100% 0% | |
Marafona | 0 0% | 0 0% | 0 0% | 0 0% | 15 20% | 100% 0% | |
100% 0% | 100% 0% | 100% 0% | 100% 0% | 100% 0% | 100% 0% | ||
ANN | Agria | 12 16% | 0 0% | 0 0% | 0 0% | 0 0% | 100% 0% |
Sprit | 0 0% | 15 20% | 0 0% | 0 0% | 0 0% | 100% 0% | |
Jelly | 0 0% | 0 0% | 15 20% | 0 0% | 0 0% | 100% 0% | |
Sante | 3 4% | 0 0% | 0 0% | 15 20% | 0 0% | 83.333% 16.667% | |
Marafona | 0 0% | 0 0% | 0 0% | 0 0% | 15 20% | 100% 0% | |
80% 20% | 100% 0% | 100% 0% | 100% 0% | 100% 0% | 96% 4% |
Stage | Samples | Accuracy | Error | CE |
---|---|---|---|---|
Training | 45 | 97.801 | 2.202 | 0.455 |
validation | 15 | 93.324 | 6.711 | 0.902 |
Testing | 15 | 93.314 | 6.736 | 0.917 |
Overall | 75 | 96.001 | 4.000 | 0.065 |
Models | Accuracy | Precision | Recall | Specificity | AUC | Fscore |
---|---|---|---|---|---|---|
LDA | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
ANN | 0.984 | 0.966 | 0.960 | 0.990 | 0.978 | 0.959 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khorramifar, A.; Rasekh, M.; Karami, H.; Malaga-Toboła, U.; Gancarz, M. A Machine Learning Method for Classification and Identification of Potato Cultivars Based on the Reaction of MOS Type Sensor-Array. Sensors 2021, 21, 5836. https://doi.org/10.3390/s21175836
Khorramifar A, Rasekh M, Karami H, Malaga-Toboła U, Gancarz M. A Machine Learning Method for Classification and Identification of Potato Cultivars Based on the Reaction of MOS Type Sensor-Array. Sensors. 2021; 21(17):5836. https://doi.org/10.3390/s21175836
Chicago/Turabian StyleKhorramifar, Ali, Mansour Rasekh, Hamed Karami, Urszula Malaga-Toboła, and Marek Gancarz. 2021. "A Machine Learning Method for Classification and Identification of Potato Cultivars Based on the Reaction of MOS Type Sensor-Array" Sensors 21, no. 17: 5836. https://doi.org/10.3390/s21175836
APA StyleKhorramifar, A., Rasekh, M., Karami, H., Malaga-Toboła, U., & Gancarz, M. (2021). A Machine Learning Method for Classification and Identification of Potato Cultivars Based on the Reaction of MOS Type Sensor-Array. Sensors, 21(17), 5836. https://doi.org/10.3390/s21175836