Daily Life Upper Limb Activity for Patients with Match and Mismatch between Observed Function and Perceived Activity in the Chronic Phase Post Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Definitions
2.3. Procedure
2.4. Accelerometry
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Ul Activity across The Three Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Low Match (n = 19) | Mismatch (n = 20) | Good Match (n = 21) | p Value across Three Groups | p Value Low Match vs. Mismatch | Mean/Median Difference (95% CI) | p Value Good Match vs. Mismatch | Mean/Median Difference (95% CI) | |
---|---|---|---|---|---|---|---|---|
Observed UL motor function (FMA-UE/66) b | 20 (15–26) | 50 (43–60) | 62 (60–64) | <0.001 * | <0.001 ** | 31 (24; 37) | <0.001 ** | 11 (5; 17) |
Perceived UL activity (SIS-Hand/100) b | 0 (0–15) | 30 (25–50) | 85 (78–100) | <0.001 * | <0.001 ** | 30 (20; 35) | <0.001 ** | 55 (45; 65) |
Hours of affected UL activity a | 2.7 (1.6) | 4.3 (2) | 6.1 (1.8) | <0.001 * | 0.017 ** | 1.6 (0.3; 3) | 0.006 ** | 1.8 (0.5; 3.2) |
Hours of unaffected UL activity a | 6.6 (2.4) | 6.8 (2) | 7 (1.7) | 0.794 | 0.943 | 0.2 (−1.4; 1.8) | 0.933 | 0.2 (–1.3; 1.7) |
Hours of unilateral affected UL activity a | 0.4 (0.3) | 0.7 (0.7) | 1.3 (0.6) | <0.001 * | 0.104 | 0.4 (−0.1; 0.8) | 0.008 ** | 0.6 (0.1;1) |
Hours of unilateral unaffected UL activity a | 4.3 (1.2) | 3.2 (1.3) | 2.2 (0.8) | <0.001 * | 0.015 ** | 1 (0.2; 1.9) | 0.012 ** | 1 (0.2; 1.9) |
Hours of bilateral UL activity a | 2.3 (1.5) | 3.6 (1.6) | 4.8 (1.6) | <0.001 * | 0.035 | 1.3 (0.1; 2.5) | 0.031 | 1.3 (0.1; 2.4) |
Activity ratio a | 0.38 (0.14) | 0.63 (0.25) | 0.87 (0.17) | <0.001 * | <0.001 ** | 0.25 (0.10; 0.40) | <0.001 ** | 0.24 (0.10; 0.39) |
Median bilateral magnitude b | 81.1 (60.3–91.4) | 90.1 (64–100) | 101.1 (88.8–126.1) | 0.002 * | 0.166 | 8.6 (−5.5; 30.1) | 0.022 ** | 16.7 (2.2; 39.7) |
Median magnitude ratio b | −7 (−7–−7) | −3.90 (−7–−1.33) | −.54 (−1.02–−0.03) | <0.001 * | 0.014 ** | 2.2 (0; 5.1) | 0.001 ** | 3.3 (1; 6.1) |
References
- Duncan Millar, J.; van Wijck, F.; Pollock, A.; Ali, M. Outcome measures in post-stroke arm rehabilitation trials: Do existing measures capture outcomes that are important to stroke survivors, carers, and clinicians? Clin. Rehabil. 2019, 33, 737–749. [Google Scholar] [CrossRef] [Green Version]
- Mayo, N.E.; Wood-Dauphinee, S.; Côté, R.; Carlton, J. Activity, Participation, and Quality of Life 6 Months Poststroke. Arch. Phys. Med. Rehabil. 2002, 83, 1035–1042. [Google Scholar] [CrossRef]
- Shim, S.; Kim, H.; Jung, J. Comparison of upper extremity motor recovery of stroke patients with actual physical activity in their daily lives measured with accelerometers. J. Phys. Ther. Sci. 2014, 26, 1009–1011. [Google Scholar] [CrossRef] [Green Version]
- Regterschot, G.R.H.; Bussmann, J.B.J.; Fanchamps, M.H.J.; Meskers, C.G.M.; Ribbers, G.M.; Selles, R.W. Objectively measured arm use in daily life improves during the first 6 months poststroke: A longitudinal observational cohort study. J. Neuroeng. Rehabil. 2021, 18, 51. [Google Scholar] [CrossRef]
- Michielsen, M.E.; de Niet, M.; Ribbers, G.M.; Stam, H.J.; Bussman, J.B. Evidence of a logarithmic relationship between motor capacity and actual performance in daily life of the paretic arm following stroke. J. Rehabil. Med. 2009, 41, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Thrane, G.; Emaus, N.; Askim, T.; Anke, A. Arm use in patients with subacute stroke monitored by accelerometry: Association with motor impairment and influence on self-dependence. J. Rehabil. Med. 2011, 43, 299–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, L.F.; Hayward, K.S.; Brauer, S. Upper limb use differs among people with varied upper limb impairment levels early post-stroke: A single-site, cross-sectional, observational study. Top. Stroke Rehabil. 2019, 27, 224–235. [Google Scholar] [CrossRef]
- Rand, D.; Eng, J.J. Disparity between functional recovery and daily use of the upper and lower extremities during subacute stroke rehabilitation. Neurorehabil. Neural Repair 2012, 26, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.R.; Klaesner, J.W.; Lang, C.E. Quantifying Real-World Upper-Limb Activity in Nondisabled Adults and Adults with Chronic Stroke. Neurorehabil. Neural Repair 2015, 29, 969–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rand, D.; Eng, J.J. Predicting daily use of the affected upper extremity 1 year after stroke. J. Stroke Cerebrovasc. Dis. 2015, 24, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Waddell, K.J.; Strube, M.J.; Bailey, R.R.; Klaesner, J.W.; Birkenmeier, R.L.; Dromerick, A.W.; Lang, C.E. Does Task-Specific Training Improve Upper Limb Performance in Daily Life Poststroke? Neurorehabil. Neural Repair 2017, 31, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Uswatte, G.; Taub, E. Implications of the Learned Nonuse Formulation for Measuring Rehabilitation Outcomes: Lessons from Constraint-Induced Movement Therapy. Rehabil. Psychol. 2005, 50, 34–42. [Google Scholar] [CrossRef]
- Bailey, R.R.; Birkenmeier, R.L.; Lang, C.E. Real-world affected upper limb activity in chronic stroke: An examination of potential modifying factors. Top. Stroke Rehabil. 2015, 22, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Banjai, R.M.; Freitas, S.M.S.F.; Silva, F.P.D.; Alouche, S.R.D. Individuals’ perception about upper limb influence on participation after stroke: An observational study. Top. Stroke Rehabil. 2018, 25, 174–179. [Google Scholar] [CrossRef]
- Stewart, J.C.; Cramer, S.C. Patient-reported measures provide unique insights into motor function after stroke. Stroke 2013, 44, 1111–1116. [Google Scholar] [CrossRef] [Green Version]
- Essers, B.; Van Gils, A.; Lafosse, C.; Michielsen, M.; Beyens, H.; Schillebeeckx, F.; Veerbeek, J.; Luft, A.; Kos, D.; Verheyden, G. Evolution and Prediction of Mismatch between Observed and Perceived Upper Limb Function in the First Year after Stroke. Disabil. Rehabil. 2020. Manuscript submitted for publication. [Google Scholar]
- WHO MONICA Project Principal Investigators. The World Health Organization Monica project (monitoring trends and determinants in cardiovascular disease): A major international collaboration. J. Clin. Epidemiol. 1988, 41, 105–114. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Towards a Common Language for Functioning, Disability and Health: ICF. Geneva. 2002. Available online: https://www.who.int/classifications/icf/icfbeginnersguide.pdf (accessed on 25 June 2021).
- Lemmens, R.J.M.; Timmermans, A.A.A.; Janssen-Potten, Y.J.M.; Smeets, R.J.E.M.; Seelen, H.A.M. Valid and reliable instruments for arm-hand assessment at ICF activity level in persons with hemiplegia: A systematic review. BMC Neurol. 2012, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.R. Assessment of Real-World Upper Limb Activity in Adults with Chronic Stroke; Arts & Sciences Electronic Theses and Dissertations: St. Louis, MO, USA, 2015; Available online: https://openscholarship.wustl.edu/art_sci_etds/407 (accessed on 25 June 2021).
- Fugl Meyer, A.R.; Jaasko, L.; Leyman, I. The post stroke hemiplegic patient. I. A method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar]
- Duncan, P.W.; Bode, R.K.; Lai, S.M.; Perera, S. Rasch analysis of a new stroke-specific outcome scale: The stroke impact scale. Arch. Phys. Med. Rehabil. 2003, 84, 950–963. [Google Scholar] [CrossRef]
- Essers, B.; Meyer, S.; De Bruyn, N.; Van Gils, A.; Boccuni, L.; Tedesco Triccas, L.; Peeters, A.; Thijs, V.; Feys, H.; Verheyden, G. Mismatch between observed and perceived upper limb function: An eye-catching phenomenon after stroke. Disabil. Rehabil. 2019, 41, 1545–1551. [Google Scholar] [CrossRef] [PubMed]
- Hoonhorst, M.H.; Nijland, R.H.; Van Den Berg, J.S.; Emmelot, C.H.; Kollen, B.J.; Kwakkel, G. How Do Fugl-Meyer Arm Motor Scores Relate to Dexterity According to the Action Research Arm Test at 6 Months Poststroke? Arch. Phys. Med. Rehabil. 2015, 96, 1845–1849. [Google Scholar] [CrossRef]
- Beninato, M.; Portney, L.G.; Sullivan, P.E. Using the International Classification of Functioning, Disability and Health as a Framework to Examine the Association Between Falls and Clinical Assessment Tools in People with Stroke. Phys. Ther. 2009, 89, 816–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaelsen, S.M.; Dannenbaum, R.; Levin, M.F. Task-specific training with trunk restraint on arm recovery in stroke: Randomized control trial. Stroke 2006, 37, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Faria-Fortini, I.; Michaelsen, S.M.; Gomes Cassiano, J.; Fuscaldi Teixeira-Salmela, L. Upper Extremity Function in Stroke Subjects: Relationships between the International Classification of Functioning, Disability, and Health Domains. J. Hand Ther. 2011, 24, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Woodbury, M.L.; Velozo, C.A.; Richards, L.G.; Duncan, P.W. Rasch analysis staging methodology to classify upper extremity movement impairment after stroke. Arch. Phys. Med. Rehabil. 2013, 94, 1527–1533. [Google Scholar] [CrossRef]
- Richardson, M.; Campbell, N.; Allen, L.; Meyer, M.; Teasell, R. The stroke impact scale: Performance as a quality of life measure in a community-based stroke rehabilitation setting. Disabil. Rehabil. 2015, 38, 1425–1430. [Google Scholar] [CrossRef]
- Hayward, K.S.; Eng, J.J.; Boyd, L.A.; Lakhani, B.; Bernhardt, J.; Lang, C.E. Exploring the Role of Accelerometers in the Measurement of Real World Upper-Limb Use after Stroke. Brain Impair. 2016, 17, 16–33. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.R.; Lang, C.E. Upper-limb activity in adults: Referent values using accelerometry. J. Rehabil. Res. Dev. 2013, 50, 1213–1222. [Google Scholar] [CrossRef]
- Urbin, M.A.; Bailey, R.R.; Lang, C.E. Validity of Body-Worn Sensor Acceleration Metrics to Index Upper Extremity Function in Hemiparetic Stroke. J. Neurol. Phys. Ther. 2015, 39, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.R.; Klaesner, J.W.; Lang, C.E. An Accelerometry-Based Methodology for Assessment of Real-World Bilateral Upper Extremity Activity. PLoS ONE 2014, 9, e103135. [Google Scholar] [CrossRef] [PubMed]
- What Are Counts? 2018. Available online: https://actigraphcorp.force.com/support/s/article/What-are-counts (accessed on 8 June 2021).
- Uswatte, G.; Miltner, W.H.R.; Foo, B.; Varma, M.; Moran, S.; Taub, E. Objective measurement of functional upper-extremity movement using accelerometer recordings transformed with a threshold filter. Stroke 2000, 31, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Uswatte, G.; Foo, W.L.; Olmstead, H.; Lopez, K.; Holand, A.; Simms, L.B. Ambulatory monitoring of arm movement using accelerometry: An objective measure of upper-extremity rehabilitation in persons with chronic stroke. Arch. Phys. Med. Rehabil. 2005, 86, 1498–1501. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.E.; Waddell, K.J.; Klaesner, J.W.; Bland, M.D. A method for quantifying upper limb performance in daily life using accelerometers. J. Vis. Exp. 2017, 122, 55673. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liao, W.; Hsieh, Y.; Lin, K.; Chen, C. Predictors of Clinically Important Changes in Actual and Perceived Functional Arm Use of the Affected Upper Limb After Rehabilitative Therapy in Chronic Stroke. Arch. Phys. Med. Rehabil. 2019, 101, 442–449. [Google Scholar] [CrossRef]
- Whyte, E.M.; Mulsant, B.H. Post stroke depression: Epidemiology, pathophysiology, and biological treatment. Biol. Psychiatry 2002, 52, 253–264. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef]
- Chin, L.F.; Hayward, K.S.; Brauer, S.G. Factors Influencing Paretic Upper Limb Use during First 4 Weeks after Stroke: A Cross-Sectional Accelerometry Study. Am. J. Phys. Med. Rehabil. 2021, 100, 153–160. [Google Scholar] [CrossRef]
- Buxbaum, L.J.; Varghese, R.; Stoll, H.; Winstein, C.J. Predictors of Arm Nonuse in Chronic Stroke: A Preliminary Investigation. Neurorehabil. Neural Repair. 2020, 34, 512–522. [Google Scholar] [CrossRef]
- Whitford, M.; Schearer, E.; Rowlett, M. Effects of in home high dose accelerometer-based feedback on perceived and actual use in participants chronic post-stroke. Physiothe. Theory Pract. 2020, 36, 799–809. [Google Scholar] [CrossRef]
- Smith, B.A.; Lang, C.E. Sensor Measures of Symmetry Quantify Upper Limb Movement in the Natural Environment Across the Lifespan. Arch. Phys. Med. Rehabil. 2019, 100, 1176–1183. [Google Scholar] [CrossRef]
- Chin, L.F.; Hayward, K.S.; Soh, A.J.A.; Tan, C.M.; Wong, C.J.R.; Loh, J.W.; Loke, G.J.H.; Brauer, S. An accelerometry and observational study to quantify upper limb use after stroke during inpatient rehabilitation. Physiother. Res. Int. 2019, 24, e1784. [Google Scholar] [CrossRef] [PubMed]
- ActiGraph Data Conversion Process. 2020. Available online: https://actigraphcorp.force.com/support/s/article/ActiGraph-Data-Conversion-Process (accessed on 23 June 2021).
- Lang, C.E.; Beebe, J.A. Relating Movement Control at 9 Upper Extremity Segments to Loss of Hand Function in People with Chronic Hemiparesis. Neurorehabil. Neural Repair 2007, 21, 279–291. [Google Scholar] [CrossRef]
- van Delden, A.L.E.; Peper, C.L.E.; Beek, P.J.; Kwakkel, G. Match and mismatch between objective and subjective improvements in upper limb function after stroke. Disabil. Rehabil. 2013, 35, 1961–1967. [Google Scholar] [CrossRef]
- Persson, H.C.; Danielsson, A.; Sunnerhagen, K.S. A cross sectional study of upper extremity strength ten days after a stroke; relationship between patient-reported and objective measures. BMC Neurol. 2015, 15, 178. [Google Scholar] [CrossRef] [Green Version]
- Waddell, K.J.; Lang, C.E. Comparison of Self-Report Versus Sensor-Based Methods for Measuring the Amount of Upper Limb Activity Outside the Clinic. Arch. Phys. Med. Rehabil. 2018, 99, 1913–1919. [Google Scholar] [CrossRef]
- Kwakkel, G.; Veerbeek, J.M.; Van Wegen, E.E.H.; Wolf, S.L. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015, 14, 224–234. [Google Scholar] [CrossRef] [Green Version]
- Taub, E.; Uswatte, G.; Mark, V.W.; Morris, D.M.; Barman, J.; Bowman, M.H.; Bryson, C.; Delgado, A.; Bishop-McKay, S. Method for enhancing real-world use of a more affected arm in chronic stroke: Transfer package of constraint-induced movement therapy. Stroke 2013, 44, 1383–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Vliet, P.; Wulf, G. Extrinsic feedback for motor learning after stroke: What is the evidence? Disabil. Rehabil. 2009, 28, 831–840. [Google Scholar] [CrossRef]
- Jones, F.; Riazi, A. Self-efficacy and self-management after stroke: A systematic review. Disabil. Rehabil. 2011, 33, 797–810. [Google Scholar] [CrossRef] [PubMed]
Upper limb functioning | An umbrella term for all upper limb functions, activities, and participation [18]. |
Observed upper limb motor function | The physiological function of the upper limb as observed and scored by the therapist [18]. |
Perceived upper limb activity | The level of upper limb activity subjectively experienced by a person at a given moment in his/her current environment [19]. |
Daily life upper limb activity | Real-world upper limb movement that is measured by accelerometry [20]. |
Low Match (n = 29) | Mismatch (n = 15) | Good Match (n = 16) | |
---|---|---|---|
Age at stroke onset (years) | 63 (52–67) | 56 (45–71) | 63 (54–68) |
Gender (male) | 19 (66) | 7 (47) | 11 (67) |
Dominant hand affected | 13 (45) | 4 (27) | 10 (63) |
Hand dominance (right) | 25 (86) | 13 (87) | 15 (94) |
Accommodation | |||
Living alone | 15 (52) | 5 (33) | 9 (56) |
Living not alone | 14 (48) | 10 (66) | 7 (44) |
Level of education | |||
Lower secondary education | 4 (14) | 1 (7) | 2 (13) |
Higher secondary education | 14 (48) | 5 (33) | 6 (38) |
Higher tertiary education | 8 (28) | 8 (53) | 4 (25) |
University degree | 2 (7) | 1 (7) | 3 (19) |
PhD degree | 1 (3) | 0 (0) | 1 (6) |
Employment status, working | 4 (14) | 4 (27) | 6 (38) |
Marital status | |||
Married | 18 (62) | 11 (73) | 8 (50) |
Divorced | 3 (10) | 1 (7) | 3 (19) |
Living together | 2 (7) | 0 (0) | 2 (13) |
Unmarried | 1 (3) | 2 (13) | 2 (13) |
Single | 4 (14) | 1 (7) | 1 (6) |
Widow(er) | 1 (3) | 0 (0) | 0 (0) |
Days since stroke onset | 991 (673–1920) | 846 (429–1489) | 975 (545–1345) |
Lateralization (left hemisphere) | 14 (48) | 5 (33) | 9 (56) |
Stroke etiology (ischemia) | 16 (55) | 11 (73) | 10 (63) |
NIHSS sensation | |||
No sensory loss | 11 (38) | 8 (53) | 13 (81) |
Mild to moderate sensory loss | 17 (59) | 5 (33) | 3 (19) |
Severe to total sensory loss | 1 (3) | 2 (13) | 0 (0) |
Disability (mRS) | |||
0: No symptoms at all | 0 (0) | 0 (0) | 2 (13) |
1: No significant disability despite symptoms | 0 (0) | 5 (33) | 8 (50) |
2: Slight disability | 12 (41) | 7 (47) | 6 (38) |
3: Moderate disability | 13 (45) | 3 (20) | 0 (0) |
4: moderately severe disability | 4 (14) | 0 (0) | 0 (0) |
Dependence in ADL (Barthel Index/100) | 85 (70–95) | 100 (95–100) | 100 (100–100) |
Cognitive function (MoCA/30) | 23 (19–27) | 26 (24–27) | 27 (24–28) |
Depression and anxiety (HADS/42) | 11 (6–15) | 12 (8–20) | 8 (4–12) |
Anxiety (HADS anxiety/21) | 5 (3–7) | 6 (5–9) | 4 (2–7) |
Depression (HADS depression/21) | 6 (2–9) | 6 (3–10) | 4 (1–6) |
Neglect (SCT <44/54) | 3 (10) | 1 (7) | 0 (0) |
Low Match (n = 29) | Mismatch (n = 15) | Good Match (n = 16) | p Value across Three Groups | p Value Low Match vs. Mismatch | Mean/Median Difference (95% CI) | p Value Good Match vs. Mismatch | Mean/Median Difference (95% CI) | |
---|---|---|---|---|---|---|---|---|
Observed UL motor function (FMA-UE/66) b | 26 (15–36) | 62 (58–63) | 62 (60–64) | <0.001 * | <0.001 ** | −36 (−40; −26) | 0.564 | 1 (−1; 4) |
Perceived UL activity (SIS-Hand/100) b | 10 (0–25) | 50 (30–70) | 93 (85–100) | <0.001 * | <0.001 ** | −40 (−50; −25) | <0.001 ** | 45 (30; 55) |
Hours of affected UL activity during 24 h a | 2.9 (1.7) | 5 (1.5) | 6.6 (1.8) | <0.001 * | <0.001 ** | −2 (−3.1; −1) | 0.013 ** | 1.6 (0.4; 2.8) |
Hours of unaffected UL activity during 24 h a | 6.6 (2.3) | 6.8 (1.4) | 7.2 (1.8) | 0.628 | 0.792 | −0.2 (−1.5; 1.2) | 0.472 | 0.4 (−0.8; 1.6) |
Hours of unilateral affected UL activity during 24 h a | 0.4 (0.3) | 1 (0.7) | 1.4 (0.6) | <0.001 * | 0.004 ** | −0.6 (−1; −0.2) | 0.092 | 0.4 (−0.1; 0.9) |
Hours of unilateral unaffected UL activity during 24 h a | 4 (1.2) | 2.8 (1.3) | 2 (0.8) | <0.001 * | 0.003 ** | 1.2 (0.4; 2) | 0.050 | −0.8 (−1.5; 0) |
Hours of bilateral UL activity during 24 h a | 2.6 (1.6) | 3.9 (1.1) | 5.1 (1.7) | <0.001 * | 0.004 ** | −1.4 (−2.3; −0.5) | 0.025 * | 1.2 (0.2; 2.2) |
Activity ratio a | 0.42 (0.15) | 0.75 (0.22) | 0.92 (0.17) | <0.001 * | <0.001 ** | −0.3 (−0.4; −0.2) | 0.020 ** | 0.17 (0.03; 0.31) |
Median bilateral magnitude b | 81.1 (58.7−96.4) | 93.1 (74−101.1) | 105.3 (87.5−140.3) | 0.002 * | 0.069 | −12 (−32.3; 1) | 0.063 | 13.3 (−0.7; 39.5) |
Median magnitude ratio b | −7 (−7–−7) | −1.36 (−1.94–−0.21) | −0.36 (−0.64–0.16) | <0.001 * | <0.001 ** | −5.6 (−6.1; −3.1) | 0.022 ** | 1 (0.3; 1.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essers, B.; Coremans, M.; Veerbeek, J.; Luft, A.; Verheyden, G. Daily Life Upper Limb Activity for Patients with Match and Mismatch between Observed Function and Perceived Activity in the Chronic Phase Post Stroke. Sensors 2021, 21, 5917. https://doi.org/10.3390/s21175917
Essers B, Coremans M, Veerbeek J, Luft A, Verheyden G. Daily Life Upper Limb Activity for Patients with Match and Mismatch between Observed Function and Perceived Activity in the Chronic Phase Post Stroke. Sensors. 2021; 21(17):5917. https://doi.org/10.3390/s21175917
Chicago/Turabian StyleEssers, Bea, Marjan Coremans, Janne Veerbeek, Andreas Luft, and Geert Verheyden. 2021. "Daily Life Upper Limb Activity for Patients with Match and Mismatch between Observed Function and Perceived Activity in the Chronic Phase Post Stroke" Sensors 21, no. 17: 5917. https://doi.org/10.3390/s21175917