Three-Dimensional Microscopic Image Reconstruction Based on Structured Light Illumination
Abstract
:1. Introduction
2. Methods
3. Experimental Setup
4. Results and Analysis
4.1. System Demonstration
4.2. Resolution and Depth of Field
5. Applications in Transportation Infrastructure Measurement
5.1. Volume Calcuation Based on a 3D Profile
5.2. Time-Dependent Measurement
5.3. Field Test with Long Working Distances
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Zhang, D.; Zou, Q.; Lin, H. 3D laser imaging and sparse points grouping for pavement crack detection. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017; pp. 2036–2040. [Google Scholar]
- Prasanna, P.; Dana, K.J.; Gucunski, N.; Basily, B.B.; La, H.M.; Lim, R.S.; Parvardeh, H. Automated Crack Detection on Concrete Bridges. IEEE Trans. Autom. Sci. Eng. 2016, 13, 591–599. [Google Scholar] [CrossRef]
- Liu, Y.F.; Nie, X.; Fan, J.S.; Liu, X.G. Image-based crack assessment of bridge piers using unmanned aerial vehicles and three-dimensional scene reconstruction. Comput. Aided Civ. Inf. 2020, 35, 511–529. [Google Scholar] [CrossRef]
- Yao, Y.; Tung, S.-T.E.; Glisic, B. Crack detection and characterization techniques—An overview. Struct. Control Health Monit. 2014, 21, 1387–1413. [Google Scholar] [CrossRef]
- Suprijanto, N.Z.; Juliastuti, E.A. Microscopic Surface Measurement Using Phase Shifting Method. Appl. Mech. Mater. 2015, 771, 4. [Google Scholar] [CrossRef]
- Moreno, D.; Taubin, G. Simple, Accurate, and Robust Projector-Camera Calibration. In Proceedings of the Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, Zurich, Switzerland, 13–15 October 2012; pp. 464–471. [Google Scholar]
- Huang, B.; Ozdemir, S.; Tang, G.; Liao, C.; Ling, H. A Single-shot-per-pose Camera-Projector Calibration System for Imperfect Planar Targets. In Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Munich, Germany, 16–20 October 2018; pp. 15–20. [Google Scholar]
- Huang, B.; Tang, Y.; Ozdemir, S.; Ling, H. A Fast and Flexible Projector-Camera Calibration System. IEEE Trans. Autom. Sci. Eng. 2020, 18, 1049–1063. [Google Scholar] [CrossRef]
- Hornbeck, L.J. Digital Light Processing and MEMS: Reflecting the digital display needs of the networked society. Proc. SPIE 1996, 2783, 2–13. [Google Scholar]
- Projector-Camera Calibration Toolbox. Available online: http://code.google.com/p/procamcalib (accessed on 14 May 2009).
- Mahmoudi, S.E.; Akhondi-Asl, A.; Rahmani, R.; Faghih-Roohi, S.; Taimouri, V.; Sabouri, A.; Soltanian-Zadeh, H. Web-based interactive 2D/3D medical image processing and visualization software. Comput. Methods Programs Biomed. 2010, 98, 2. [Google Scholar] [CrossRef] [PubMed]
- Anwar, H.; Din, I.; Park, K. Projector calibration for 3D scanning using virtual target images. Int. J. Precis. Eng. Manuf. 2012, 13, 125–131. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, J.; Wang, Q.; Chen, L.; Zhang, Y. New algorithm on phase-shifting interferometry: The overlapping averaging 4-frame algorithm. Proc. SPIE 1993, 2003, 355–366. [Google Scholar]
- Xu, Y.; Chen, L.; Zhu, R.; Yao, G. Algorithm study of the measurement of the radius of curvature of fiber optic connector end faces. In Optical Design and Testing II; SPIE: Beijing, China, 2005. [Google Scholar]
- Kimura, M.; Mochimaru, M.; Kanade, T. Projector Calibration using Arbitrary Planes and Calibrated Camera. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007. [Google Scholar]
- Li, F.; Sekkati, H.; Deglint, J.; Scharfenberger, C.; Lamm, M.; Clausi, D.; Zelek, J.; Wong, A. Simultaneous Projector-Camera Self-Calibration for Three-Dimensional Reconstruction and Projection Mapping. IEEE Trans. Comput. Imaging 2017, 3, 74–83. [Google Scholar] [CrossRef]
- Zhang, Z. A flexible new technique for camera calibration. Pattern Anal. Mach. Intell. IEEE Trans. 2000, 22, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Chen, Q.; Zhang, Y.; Feng, S.; Tao, T.; Li, H.; Yin, W.; Zuo, C. Dynamic microscopic 3d shape measurement based on marker-embedded fourier transform profilometry. Appl. Opt. 2018, 57, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Tang, Y. Fast 3D reconstruction using one-shot spatial structured light. In Proceedings of the 2014 IEEE International Conference on Systems, San Diego, CA, USA, 5–8 October 2014. [Google Scholar]
- Zhang, X.; Zhang, Z.; Cheng, W. Iterative projector calibration using multi-frequency phase-shifting method. In Proceedings of the 2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Siem Reap, Cambodia, 15–17 July 2015. [Google Scholar]
- Li, K.; Yao, J.; Lu, X.; Li, L.; Zhang, Z. Hierarchical line matching based on Line–Junction–Line structure descriptor and local homography estimation. Neurocomputing 2016, 184, 207–220. [Google Scholar] [CrossRef]
- Thorlabs USAF 1951 Test Target. Available online: https://www.thorlabs.com/thorproduct.cfm?partnumber=R3L3S1P (accessed on 13 November 2009).
- Zalama, E.; Gómez-García-Bermejo, J.; Medina, R.; Llamas, J. Road Crack Detection Using Visual Features Extracted by Gabor Filters. Comput. -Aided Civ. Infrastruct. Eng. 2014, 29, 342–358. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, F.; Daniel Zhang, Y.; Zhu, Y.J. Road crack detection using deep convolutional neural network. In Proceedings of the 2016 IEEE International Conference on Image Processing, Phoenix, AZ, USA, 25–28 September 2016. [Google Scholar]
- McCormick, N.; Waterfall, P.; Owens, A. Optical imaging for low-cost structural measurements. Proc. Inst. Civ. Eng. -Bridge Eng. 2014, 167, 33–42. [Google Scholar]
- Medina, R.; Llamas, J.; Zalama, E.; Gómez-García-Bermejo, J. Enhanced automatic detection of road surface cracks by combining 2D/3D image processing techniques. In Proceedings of the 2014 IEEE International Conference on Image Processing, Paris, France, 27–30 October 2014. [Google Scholar]
- Yu, S.J.; Sukumar, S.R.; Koschan, A.F.; Page, D.L.; Abidi, M.A. 3D reconstruction of road surfaces using an integrated multi-sensory approach. Opt. Lasers Eng. 2007, 45, 808–818. [Google Scholar] [CrossRef]
- Fan, X.; Li, K.; Lai, H.; Xie, Y.; Cao, R.; Zheng, J. Internal stress distribution and cracking around flaws and openings of rock block under uniaxial compression: A particle mechanics approach. Computers and Geotechnics 2018, 102, 28–38. [Google Scholar] [CrossRef]
- Benedetto, A. A three dimensional approach for tracking cracks in bridges using GPR. J. Appl. Geophys. 2013, 97, 37–44. [Google Scholar] [CrossRef]
- Li, G.; Zhao, X.; Du, K.; Ru, F.; Zhang, Y. Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine. Autom. Constr. 2017, 78, 51–61. [Google Scholar] [CrossRef]
- McAlorum, J.; Perry, M.; Fusiek, G.; Niewczas, P.; McKeeman, I.; Rubert, T. Deterioration of cracks in onshore wind turbine foundations. Eng. Struct. 2018, 167, 121–131. [Google Scholar] [CrossRef]
- Weigraeber, P.; Leguillon, D.; Becker, W. A review of Finite Fracture Mechanics: Crack initiation at singular and non-singular stress raisers. Arch. Appl. Mech. 2016, 86, 375–401. [Google Scholar] [CrossRef]
- Glubokovskikh, S.; Gurevich, B.; Lebedev, M.; Mikhaltsevitch, V.; Tan, S. Effect of asperities on stress dependency of elastic properties of cracked rocks. Int. J. Eng. Sci. 2016, 98, 116–125. [Google Scholar] [CrossRef]
- Liu, Z.; Correia, J.; Carvalho, H.; Mourão, A.; de Jesus, A.; Calçada, R.; Berto, F. Global-local fatigue assessment of an ancient riveted metallic bridge based on submodelling of the critical detail. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 546–560. [Google Scholar] [CrossRef]
- Feng, B.; Wang, X.; Wu, Z. Fatigue life assessment of FRP cable for long-span cable-stayed bridge. Compos. Struct. 2019, 210, 159–166. [Google Scholar] [CrossRef]
Pattern Number | Number of Stripes |
---|---|
1–2 | All white or all black |
3–4 | 2 |
5–6 | 3 |
7–8 | 5 |
9–10 | 9 |
11–12 | 15 |
13–14 | 30 |
15–16 | 60 |
17–18 | 120 |
19–20 | 240 |
21–22 | 480 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, T.; Qi, Y.; Zhu, C.; Tang, Y.; Wu, B. Three-Dimensional Microscopic Image Reconstruction Based on Structured Light Illumination. Sensors 2021, 21, 6097. https://doi.org/10.3390/s21186097
Shi T, Qi Y, Zhu C, Tang Y, Wu B. Three-Dimensional Microscopic Image Reconstruction Based on Structured Light Illumination. Sensors. 2021; 21(18):6097. https://doi.org/10.3390/s21186097
Chicago/Turabian StyleShi, Taichu, Yang Qi, Cheng Zhu, Ying Tang, and Ben Wu. 2021. "Three-Dimensional Microscopic Image Reconstruction Based on Structured Light Illumination" Sensors 21, no. 18: 6097. https://doi.org/10.3390/s21186097
APA StyleShi, T., Qi, Y., Zhu, C., Tang, Y., & Wu, B. (2021). Three-Dimensional Microscopic Image Reconstruction Based on Structured Light Illumination. Sensors, 21(18), 6097. https://doi.org/10.3390/s21186097