Subgroup Preference Neural Network
Abstract
:1. Introduction
- Restricted label order = () can be represented as .
- Non-restricted total order = () can be represented as , where a, b, c and d are the label indexes and , , and are the ranking values of these labels respectively.
- The ranking methods are based on probability and classification; thus, They do not learn the preference relation between labels divided into groups.
- The ranking methods learn both unrestricted and restricted ranking labels using the same learning approach.
- Real customer data often explicitly rate different categories of products and services as multi-label subgroups, e.g., restaurant rating based on food quality and customer services [30].
- Multi-label data that have unrestricted preference relations between labels are converted into connected subgroups that have restricted relations. This can be seen in the sushi dataset [33,34] where is solved by 2 subgroups using the indifference ∼ or incomparable ⊥ relations as or . Another example of no ground-truth data where one data record has two labels and which are mapped to .
- Introducing a novel multi activation function neuron (MAFN) which uses multiple activation function where each function serve a group of output labels.
- Ranking groups of label has incomparable/indifference relation simultaneously.
- Discovering the hidden relation between different datasets by learning them together in one model is a novel approach to build an accumulative learning approach.
- Solving the data ambiguity by removing the duplicated record which have different labels and marking the class overlap data with subgroup labels.
2. The Proposed SGPNN
2.1. StairStep (SS) Activation Function
2.2. Error Function
2.3. Preference Neural Network (PNN)
2.3.1. One Middle Layer
2.3.2. Preference Neuron (PN)
2.4. SGPNN Architecture
Multi Activation Function Neuron (MAFN)
2.5. SGPNN Functionality
3. Data Preparation and Learning Algorithm
3.1. Conjoint Data
3.2. Ranking Unification
Algorithm 1 Ranking Unification |
3.3. SGPNN Learning Steps
3.3.1. Middle Layer FF
3.3.2. Output Layer FF
3.3.3. Output Layer BP
3.3.4. Middle Layer BP
3.3.5. Output Layer UW
3.3.6. Middle Layer UW
3.4. Dropout Regularization
4. Experiments
4.1. Datasets
4.1.1. Restaurants Rating
4.1.2. German Election in 2005 and 2009
4.1.3. Emotions
4.1.4. Irrelevant Subgroups Data
4.1.5. Label Ranking Benchmark Dataset
4.2. Results
4.2.1. Relevant Subgroup Data
4.2.2. Non-Relevant Subgroup Data
5. Discussion
5.1. Ranking Enhancement
5.2. Convergence Fluctuation
5.3. Potential Applications
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frnkranz, J.; Hüllermeier, E. Preference Learning, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Brafman, R.; Domshlak, C. Preference handling—An introductory tutorial. AI Mag. 2009, 30, 58–86. [Google Scholar] [CrossRef] [Green Version]
- Adomavicius, G.; Tuzhilin, A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [Google Scholar] [CrossRef]
- Montaner, M.; López, B. A Taxonomy of Recommender Agents on the Internet. Artif. Intell. Rev. 2003, 19, 285–330. [Google Scholar] [CrossRef]
- Aiolli, F. A preference model for structured supervised learning tasks. In Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05), Houston, TX, USA, 27–30 November 2005; pp. 557–560. [Google Scholar]
- Crammer, K.; Singer, Y. Pranking with ranking. Nips 2002, 1, 641–647. [Google Scholar]
- Chankong, V.; Haimes, Y.Y. Multiobjective Decision Making: Theory and Methodology; Courier Dover Publications: Mineola, NY, USA, 2008. [Google Scholar]
- Brinker, K.; Hüllermeier, E. Label ranking in case-based reasoning. In Proceedings of the International Conference on Case-Based Reasoning, Trondheim, Norway, 26–28 June 2007; pp. 77–91. [Google Scholar]
- Chiclana, F.; Herrera-Viedma, E.; Alonso, S. A Note on Two Methods for Estimating Missing Pairwise Preference Values. IEEE Trans. Syst. Man Cybern. Part B 2009, 39, 1628–1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vembu, S.; Gärtner, T. Label Ranking Algorithms: A Survey. In Preference Learning; Springer: Berlin/Heidelberg, Germany, 2010; pp. 45–64. [Google Scholar]
- Henzgen, S.; Hüllermeier, E. Mining rank data. In Proceedings of the International Conference on Discovery Science, Bled, Slovenia, 8–10 October 2014; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2014; pp. 123–134. [Google Scholar]
- Klösgen, W.; Zytkow, J.M. Handbook of Data Mining and Knowledge Discovery; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Klösgen, W. Explora: A Multipattern and Multistrategy Discovery Assistant. In Advances in Knowledge Discovery and Data Mining; AAAI/MIT Press: Palo Alto, CA, USA, 1996. [Google Scholar]
- Wrobel, S. An Algorithm for Multi-relational Discovery of Subgroups. In European Symposium on Principles of Data Mining and Knowledge Discovery; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Xu, Z.; Tang, Y.; Huang, Q.; Fu, S.; Li, X.; Lin, B.; Xu, A.; Chen, J. Systematic review and subgroup analysis of the incidence of acute kidney injury (AKI) in patients with COVID-19. BMC Nephrol. 2021, 22, 52. [Google Scholar] [CrossRef]
- Helal, S. Subgroup Discovery Algorithms: A Survey and Empirical Evaluation. J. Comput. Sci. Technol. 2016, 31, 561–576. [Google Scholar] [CrossRef]
- Leeper, T.J.; Hobolt, S.B.; Tilley, J. Measuring Subgroup Preferences in Conjoint Experiments. Political Anal. 2020, 28, 207–221. [Google Scholar] [CrossRef] [Green Version]
- Deepa, N.; Ganesan, K.; Srinivasan, K.; Chang, C.Y. Realizing Sustainable Development via Modified Integrated Weighting MCDM Model for Ranking Agrarian Dataset. Sustainability 2019, 11, 6060. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; ching Lau, Y.; Chan, L.; Luk, J.W. Prevalence of social media addiction across 32 nations: Meta-analysis with subgroup analysis of classification schemes and cultural values. Addict. Behav. 2021, 117, 106845. [Google Scholar] [CrossRef] [PubMed]
- Vincent, D.R.; Deepa, N.; Elavarasan, D.; Srinivasan, K.; Chauhdary, S.H.; Iwendi, C. Sensors Driven AI-Based Agriculture Recommendation Model for Assessing Land Suitability. Sensors 2019, 19, 3667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, S.; Ester, M.; Kießling, W. Preference Mining: A Novel Approach on Mining User Preferences for Personalized Applications. In Knowledge Discovery in Databases: PKDD 2003; Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 204–216. [Google Scholar]
- Sá, C.; Duivesteijn, W.; Azevedo, P.; Jorge, A.; Soares, C.; Knobbe, A. Discovering a taste for the unusual: Exceptional models for preference mining. Mach. Learn. 2018, 107, 1775–1807. [Google Scholar]
- Pandeya, Y.R.; Bhattarai, B.; Lee, J. Deep-Learning-Based Multimodal Emotion Classification for Music Videos. Sensors 2021, 21, 4927. [Google Scholar] [CrossRef]
- Rueping, S. Ranking Interesting Subgroups. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, Montreal, BC, Canada, 14–18 June 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 913–920. [Google Scholar] [CrossRef]
- Hüllermeier, E.; Furnkranz, J.; Cheng, W.; Brinker, K. Label ranking by learning pairwise preferences. Artif. Intell. 2008, 172, 1897–1916. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Hühn, J.; Hüllermeier, E. Decision Tree and Instance-Based Learning for Label Ranking. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, Montreal, BC, Canada, 14–18 June 2009; pp. 161–168. [Google Scholar]
- Grbovic, M.; Djuric, N.; Guo, S.; Vucetic, S. Supervised clustering of label ranking data using label preference information. Mach. Learn. 2013, 93, 191–225. [Google Scholar] [CrossRef] [Green Version]
- Burges, C.; Shaked, T. Learning to rank using gradient descent. In Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7–11 August 2005; pp. 58–86. [Google Scholar]
- Ribeiro, G.; Duivesteijn, W.; Soares, C.; Knobbe, A. Multilayer Perceptron for Label Ranking. In Proceedings of the 22nd International Conference on Artificial Neural Networks and Machine Learning, Lausanne, Switzerland, 11–14 September 2012; pp. 25–32. [Google Scholar]
- Vargas-Govea, B.; González-Serna, G.; Ponce-Medellın, R. Effects of relevant contextual features in the performance of a restaurant recommender system. ACM RecSys 2011, 11, 56. [Google Scholar]
- Rebelo, C. Label Ranking Datasets (German2009). Mendeley Data 2018, v2. [Google Scholar] [CrossRef]
- Rebelo, C. Label Ranking datasets (german2005). Mendeley Data 2018, v2. [Google Scholar] [CrossRef]
- Rebelo, C. Label Ranking datasets (sushi). Mendeley Data 2018, v2. [Google Scholar] [CrossRef]
- Kamishima, T. Nantonac Collaborative Filtering: Recommendation Based on Order Responses. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–27 August 2003; pp. 583–588. [Google Scholar]
- Aizenberg, I.; Aizenberg, N.; Vandewalle, J.P. Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications; Kluwer Academic Publishers: Norwell, MA, USA, 2000. [Google Scholar]
- Moraga, C.; Heider, R. “New lamps for old!” (Generalized Multiple-valued Neurons). In Proceedings of the 29th IEEE International Symposium on Multiple-Valued Logic (Cat. No. 99CB36329), Freiburg, Germany, 20–22 May 1999; pp. 36–41. [Google Scholar]
- Kendall, M. Rank Correlation Methods. J. Inst. Actuar. 1949, 75, 140–141. [Google Scholar] [CrossRef]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Elgharabawy, A.; Parsad, M.; Lin, C.T. Preference neural network. Preprint 2020. [Google Scholar] [CrossRef]
- Lippmann, R.P. An introduction to computing with neural nets. IEEE ASSP Mag. 1987, 4, 4–22. [Google Scholar] [CrossRef]
- Kubat, M. Neural Networks: A Comprehensive Foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. Knowl. Eng. Rev. 1999, 13, 409–412. [Google Scholar] [CrossRef]
- Mirchandani, G.; Cao, W. On hidden nodes for neural nets. IEEE Trans. Circuits Syst. 1989, 36, 661–664. [Google Scholar] [CrossRef]
- Elgharabawy, A. Preference Neural Network Convergence. Video File, Version 1.0.0. 2021. Available online: https://drive.google.com/drive/folders/1yxuqYoQ3Kiuch-2sLeVe2ocMj12QVsRM?usp=sharing (accessed on 1 June 2021).
- Trohidis, K.; Tsoumakas, G. Multi-label classification of music by emotion. EURASIP J. Audio Speech Music. Process. 2011, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- de Sá, C.R.; Soares, C.; Knobbe, A.; Cortez, P. Label Ranking Forests. Expert Syst. J. Knowl. Eng. 2017, 34, e12166. [Google Scholar] [CrossRef] [Green Version]
Type | FF-ANN | PNN |
---|---|---|
Input layer | one feature/instance | one instance |
Hidden layer | one/multilayer | single layer |
Activation function | conventional functions * | SS |
Gradient | descent | ascent |
Objective function | rms | spearman |
Dataset | Category | Domain | Type | Sub. Rel. | Inst. | Attr. | Sub. | Labels | |
---|---|---|---|---|---|---|---|---|---|
rest-food-services | user rating | single | real | ∼ | 92 | 13 | 2 | 5, 5 | 87.7% |
100 | 13 | 2 | 10, 10 | 76.9% | |||||
176 | 13 | 2 | 20, 20 | 57.7% | |||||
german-2005/9 | election | single | s-s | ∼ | 412 | 31 | 2 | 5, 5 | 100% |
emotions | music | ≻,∼,≺ | 392 | 72 | 3 | 4, 2 | 100% | ||
sushi | user rating | ⊥ | 4825 | 10 | 3 | 10, 10, 10 | 95% | ||
iris-wine | bio.-chem. | multi. | s-s | ⊥ | 26,700 | 17 | 2 | 3, 3 | 99.7% |
iris-stock | bio.-trades | 142,500 | 9 | 2 | 3, 5 | 99.8% | |||
wine-stock | chem.-trades | 169,100 | 18 | 2 | 3, 5 | 100% | |||
iris-wine-stock | bio.-chem.-trades | 25,365,000 | 22 | 3 | 3, 3, 5 | 99.9% |
Sub1. | Sub2. | Sub3. | |||
---|---|---|---|---|---|
Positive Feeling Sub. | Rel. | Negative Feeling Sub. | |||
Amazed | Happy | Relaxing | Sad | Angry | |
Surprised | Pleased | Calm | Lonely | Aggressive | |
1 | 1–3 | 1–3 | ≻ | 1–3 | 1–3 |
1 | 1–3 | 1–3 | ∼ | 1–3 | 1 |
2 or 3 | 1–3 | 1–3 | ≺ | 1–3 | 1 |
2 or 3 | 1–3 | 1–3 | ∼ | 1–3 | 1–3 |
2 or 3 | 1 | 1–3 | ≺ | 1 | 1–3 |
2 or 3 | 2 or 3 | 1–3 | ≻ | 1 | 1 |
Dataset | S. Group | Scale | #MAFN | L.r. | PNN | SGPNN |
---|---|---|---|---|---|---|
rest-food-serv. | food quality | −1:1 | 100 | 0.06 | 0.814 | 0.912 |
customer service | 0.07 | 0.898 | 0.902 | |||
german election | year 2005 | −20:20 | 100 | 0.05 | 0.8125 | 0.897 |
year 2007 | 0.06 | 0.762 | 0.821 | |||
emotions | positive feeling | −10:10 | 100 | 0.05 | 0.616 | 0.87 |
negative feeling | 0.56 | 0.82 | ||||
sushi | unique user pref. 1 | −20:20 | 100 | 0.05 | 0.741 | 0.851 |
unique user pref. 2 | 0.813 | |||||
unique user pref. 3 | 0.92 | |||||
iris-wine | biology (iris) | −10:10 | 200 | 0.0007 | 0.917 | 0.933 |
chemistry (wine) | 0.901 | 0.804 | ||||
iris-stock | biology (iris) | −10:10 | 200 | 0.0007 | 0.917 | 0.91 |
trades (stock) | 0.834 | 0.75 | ||||
wine-stock | chemistry (wine) | −10:10 | 200 | 0.0007 | 0.901 | 0.911 |
trades (stock) | 0.834 | 0.732 | ||||
iris-wine-stock | biology (iris) | −10:10 | 200 | 0.0007 | 0.917 | 0.912 |
chemistry (wine) | 0.901 | 0.856 | ||||
trades (stock) | 0.834 | 0.956 | ||||
Average | 0.82 | 0.865 |
Multi Label Ranking Methods | ||||||
---|---|---|---|---|---|---|
Dataset | S. Clust. | DT | MLP-LR | LRF | PNN | SGPNN (Iris-Wine-Stock) |
iris | 0.814 | 0.966 (IBLR) | 0.925 (LA) | 0.947 | 0.917 | 0.921 |
wine | 0.898 | 0.949 (IBLR) | 0.931 (LA) | 0.882 | 0.901 | 0.865 |
stock | 0.566 | 0.927 (IBLR) | 0.745 (CA) | 0.895 | 0.834 | 0.956 |
Average | 0.6 | 0.848 | 0.692 | 0.730 | 0.884 | 0.914 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elgharabawy, A.; Prasad, M.; Lin, C.-T. Subgroup Preference Neural Network. Sensors 2021, 21, 6104. https://doi.org/10.3390/s21186104
Elgharabawy A, Prasad M, Lin C-T. Subgroup Preference Neural Network. Sensors. 2021; 21(18):6104. https://doi.org/10.3390/s21186104
Chicago/Turabian StyleElgharabawy, Ayman, Mukesh Prasad, and Chin-Teng Lin. 2021. "Subgroup Preference Neural Network" Sensors 21, no. 18: 6104. https://doi.org/10.3390/s21186104
APA StyleElgharabawy, A., Prasad, M., & Lin, C. -T. (2021). Subgroup Preference Neural Network. Sensors, 21(18), 6104. https://doi.org/10.3390/s21186104