High Quantum Efficiency and Broadband Photodetector Based on Graphene/Silicon Nanometer Truncated Cone Arrays
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chaliyawala, H.; Aggarwal, N.; Purohit, Z.; Patel, R.; Gupta, G.; Jaffre, A.; Le Gall, S.; Ray, A.; Mukhopadhyay, I. Role of nanowire length on the performance of a self-driven NIR photodetector based on mono/bi-layer graphene (cam-phor)/Si-nanowire Schottky junction. Nanotechnology 2020, 31, 225208. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Wu, J.; Liu, S.; Xiong, J.; Jagadish, C.; Wang, Z.M. Design and fabrication of silicon nanowires towards efficient solar cells. Nano Today 2016, 11, 704–737. [Google Scholar] [CrossRef]
- Bao, X.Q.; Cerqueira, M.F.; Alpuim, P.; Liu, L. Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution. Chem. Commun. 2015, 51, 10742–10745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, K.; Khan, S.A.; Jafri, M.Z.M. Structural and optical properties of ITO/TiO2 anti-reflective films for solar cell applications. Nanoscale Res. Lett. 2014, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Bai, M.; Liu, H.; Xie, F.; Zhao, J.; Liu, W.; Xie, H. Light trapping enhancement via structure design. Int. J. Mod. Phys. B 2020, 34. [Google Scholar] [CrossRef]
- Hou, G.; Wang, Z.; Ma, H.; Ji, Y.; Linwei, Y.U.; Xu, J.; Chen, K. High temperature stable plasmonic and cavity resonances in metal nanoparticle decorated silicon nanopillars for strong broadband absorption in photothermal applications. Nanoscale 2019, 11, 14777–14784. [Google Scholar] [CrossRef]
- Sun, C.-H.; Jiang, P.; Jiang, B. Broadband moth-eye antireflection coatings on silicon. Appl. Phys. Lett. 2008, 92, 061112. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.-H.; Min, W.-L.; Linn, N.C.; Jiang, P.; Jiang, B. Templated fabrication of large area subwavelength antireflection gratings on silicon. Appl. Phys. Lett. 2007, 91, 231105. [Google Scholar] [CrossRef]
- Lu, J.; Yan, J.; Yao, J.; Zheng, Z.; Mao, B.; Zhao, Y.; Li, J. All-Dielectric Nanostructure Fabry–Pérot-Enhanced Mie Resonances Coupled with Photogain Modulation toward Ultrasensitive In2S3 Photodetector. Adv. Funct. Mater. 2020, 31, 2007987. [Google Scholar] [CrossRef]
- Mandal, M.; Maitra, A.; Das, T.; Das, C.K. Graphene and Related Two-Dimensional Materials; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 3–23. [Google Scholar]
- Wang, K.F.; Wang, B.L.; Zeng, S. Small scale effect on the pull-in instability and vibration of graphene sheets. Microsyst. Technol. 2016, 23, 2033–2041. [Google Scholar] [CrossRef]
- Zheng, S.; Zhao, Q.; Peng, L.; Jiang, X. Tunable plasmon induced transparency with high transmittance in a two-layer graphene structure. Results Phys. 2021, 23, 104040. [Google Scholar] [CrossRef]
- Choi, W.K.; Liew, T.H.; Dawood, M.K.; Smith, H.I.; Thompson, C.V.; Hong, M.H. Synthesis of Silicon Nanowires and Nanofin Arrays Using Interference Lithography and Catalytic Etching. Nano Lett. 2008, 8, 3799–3802. [Google Scholar] [CrossRef]
- Reina, X.; Jia, J.H.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large area, few layer graphene films on arbitrary substrates by chemical vapor deposition. Nano. Lett. 2009, 9, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.K.; Waghmare, U.V.; Novoselov, K.; Krishnamurthy, H.R.; Geim, A.K.; Ferrari, A.C.; et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Schuler, S.; Muench, J.E.; Ruocco, A.; Balci, O.; van Thourhout, D.; Sorianello, V.; Romagnoli, M.; Watanabe, K.; Taniguchi, T.; Goykhman, I.; et al. High-responsivity graphene photodetectors integrated on silicon microring resonators. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Butun, S.; Tongay, S.; Aydin, K. Enhanced Light Emission from Large-Area Monolayer MoS2 Using Plasmonic Nanodisc Arrays. Nano Lett. 2015, 15, 2700–2704. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Wang, Z.; Zhao, J.; Wen, S.; Zhang, P.; Xie, F.; Liu, H. 2D MoS2 Encapsulated Silicon Nanopillar Array with High-Performance Light Trapping Obtained by Direct CVD Process. Crystals 2021, 11, 267. [Google Scholar] [CrossRef]
- Li, G.; Li, H.; Ho, J.Y.L.; Wong, M.; Kwok, H.S. Nanopyramid Structure for Ultrathin c-Si Tandem Solar Cells. Nano Lett. 2014, 14, 2563–2568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.M.; Yu, J.S.; Lee, Y.T. Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption en-hancement. Opt. Lett. 2010, 35, 276–278. [Google Scholar] [CrossRef] [PubMed]
- Riazimehr, S.; Kataria, S.; Gonzalez-Medina, J.M.; Wagner, S.; Shaygan, M.; Suckow, S.; Ruiz, F.G.; Engstrom, O.; Godoy, A.; Lemme, M.C. High responsivity and quantum efficiency of graphene/silicon photodiodes achieved by interdigitating Schottky and gated regions. ACS Photonics 2018, 6, 107–115. [Google Scholar] [CrossRef]
- Wang, L.; Jie, J.; Shao, Z.; Zhang, Q.; Zhang, X.; Wang, Y.; Sun, Z.; Lee, S.-T. MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High-Detectivity, Self-Driven Visi-ble-Near Infrared Photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919. [Google Scholar] [CrossRef]
- Mao, C.-H.; Dubey, A.; Lee, F.-J.; Chen, C.-Y.; Tang, S.-Y.; Ranjan, A.; Lu, M.-Y.; Chueh, Y.-L.; Gwo, S.; Yen, T.-J. An Ultrasensitive Gateless Photodetector Based on the 2D Bilayer MoS2–1D Si Nanowire–0D Ag Nanoparticle Hybrid Structure. ACS Appl. Mater. Interfaces 2021, 13, 4126–4132. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liang, H.; Zhang, Y.; Yin, S.; Cai, C.; Liu, W.; Jia, T. Vertical Tip-to-Tip Interconnection p–n Silicon Nanowires for Plasmonic Hot Electron-Enhanced Broadband Photodetectors. ACS Appl. Nano Mater. 2021, 4, 1567–1575. [Google Scholar] [CrossRef]
- Wu, D.; Lou, Z.; Wang, Y.; Yao, Z.; Xu, T.; Shi, Z.; Xu, S.; Tian, Y.; Li, X.; Tsang, Y.H. Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction. Sol. Energy Mater. Sol. Cells 2018, 182, 272–280. [Google Scholar] [CrossRef]
- Xie, C.; Nie, B.; Zeng, L.; Liang, F.-X.; Wang, M.-Z.; Luo, L.; Feng, M.; Yu, Y.; Wu, C.-Y.; Wu, Y.; et al. Core–Shell Heterojunction of Silicon Nanowire Arrays and Carbon Quantum Dots for Photovoltaic Devices and Self-Driven Photodetectors. ACS Nano 2014, 8, 4015–4022. [Google Scholar] [CrossRef] [PubMed]
- Chee, S.-S.; Seo, D.; Kim, H.; Jang, H.; Lee, S.; Moon, S.P.; Lee, K.H.; Kim, S.W.; Choi, H.; Ham, M.-H. Lowering the Schottky Barrier Height by Graphene/Ag Electrodes for High-Mobility MoS2 Field-Effect Transistors. Adv. Mater. 2018, 31, e1804422. [Google Scholar] [CrossRef]
- Ying, X.; Li, K.; Liu, L.; Wang, J.; Jiang, Y.; Xu, J.; Liu, Z. Spectral photovoltaic response of graphene-silicon heterojunction. Appl. Phys. Lett. 2017, 111, 251106. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Liu, H.; Deng, L.; Bai, M.; Xie, F.; Wen, S.; Liu, W. High Quantum Efficiency and Broadband Photodetector Based on Graphene/Silicon Nanometer Truncated Cone Arrays. Sensors 2021, 21, 6146. https://doi.org/10.3390/s21186146
Zhao J, Liu H, Deng L, Bai M, Xie F, Wen S, Liu W. High Quantum Efficiency and Broadband Photodetector Based on Graphene/Silicon Nanometer Truncated Cone Arrays. Sensors. 2021; 21(18):6146. https://doi.org/10.3390/s21186146
Chicago/Turabian StyleZhao, Jijie, Huan Liu, Lier Deng, Minyu Bai, Fei Xie, Shuai Wen, and Weiguo Liu. 2021. "High Quantum Efficiency and Broadband Photodetector Based on Graphene/Silicon Nanometer Truncated Cone Arrays" Sensors 21, no. 18: 6146. https://doi.org/10.3390/s21186146
APA StyleZhao, J., Liu, H., Deng, L., Bai, M., Xie, F., Wen, S., & Liu, W. (2021). High Quantum Efficiency and Broadband Photodetector Based on Graphene/Silicon Nanometer Truncated Cone Arrays. Sensors, 21(18), 6146. https://doi.org/10.3390/s21186146