Automatic Separation of Respiratory Flow from Motion in Thermal Videos for Infant Apnea Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background and Definitions
- RF signal: the signal obtained by combining only the RF pixels.
- RM signal: the one obtained using only the RM pixels.
- RM pixels are located at (typically sharp) edges in the thermal image, e.g., the boundary of the head. Without a gradient, the RM would not be visible. Moreover, the steeper the gradient, the stronger the temporal signal. RM pixels typically extend 1-dimensionally (along an edge).
- RF pixels can be in non-edge areas of the image. Moreover, the temperature changes due to ex/inhalation generate areas with a smooth circular gradient, caused by thermal diffusion. Consequently, they typically extend 2-dimensionally in the image.
- RM signals can be in phase, or in anti-phase with the RF signal, depending on the direction of the motion and the temperature gradient. The RF always results in warming regions during exhalation and cooling regions during inhalation, whereas the RM, for example, could be visible at the edge between blanket and face resulting in warm pixels becoming colder during inhalation, or at the edge between the infant’s head and the sheet, resulting in colder pixels becoming warmer during inhalation.
2.2. Materials
2.2.1. Experimental Setup
2.2.2. Dataset
2.2.3. Annotation of the Respiratory Flow Pixels Location
2.2.4. Obstructive Apnea Simulation
2.3. Method
2.3.1. Preprocessing
2.3.2. Respiratory Flow Detection
2.3.3. Obstructive Apnea Detection
2.3.4. Evaluation Metrics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loughlin, P.C.; Sebat, F.; Kellett, J.G. Respiratory Rate: The Forgotten Vital Sign—Make It Count! Jt. Comm. J. Qual. Patient Saf. 2018, 44, 494–499. [Google Scholar] [CrossRef]
- Eichenwald, E.C.; on Fetus, C.; Newborn, A.A.O.P. Apnea of Prematurity. Pediatrics 2016, 137, e20153757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairchild, K.; Mohr, M.; Paget-Brown, A.; Tabacaru, C.; Lake, D.; Delos, J.; Moorman, J.R.; Kattwinkel, J. Clinical associations of immature breathing in preterm infants: Part 1—Central apnea. Pediatr. Res. 2016, 80, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Erickson, G.; Dobson, N.R.; Hunt, C.E. Immature control of breathing and apnea of prematurity: The known and unknown. J. Perinatol. 2021, 1–13, Epub ahead of print. [Google Scholar]
- Mathew, O.P. Apnea of prematurity: Pathogenesis and management strategies. J. Perinatol. 2011, 31, 302–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.D.; Lee, W.H.; Lee, Y.; Lee, H.J.; Cha, T.; Kim, S.H.; Song, K.M.; Lim, Y.H.; Cho, S.H.; Cho, S.H.; et al. Non-contact respiration monitoring using impulse radio ultrawideband radar in neonates. R. Soc. Open Sci. 2019, 6, 190149. [Google Scholar] [CrossRef] [Green Version]
- Schellenberger, S.; Shi, K.; Michler, F.; Lurz, F.; Weigel, R.; Koelpin, A. Continuous In-Bed Monitoring of Vital Signs Using a Multi Radar Setup for Freely Moving Patients. Sensors 2020, 20, 5827. [Google Scholar] [CrossRef]
- Villarroel, M.; Chaichulee, S.; Jorge, J.; Davis, S.; Green, G.; Arteta, C.; Zisserman, A.; McCormick, K.; Watkinson, P.; Tarassenko, L. Non-contact physiological monitoring of preterm infants in the neonatal intensive care unit. NPJ Digit. Med. 2019, 2, 128. [Google Scholar] [CrossRef] [Green Version]
- van Gastel, M.; Stuijk, S.; Overeem, S.; van Dijk, J.P.; van Gilst, M.M.; de Haan, G. Camera-based vital signs monitoring during sleep–A proof of concept study. IEEE J. Biomed. Health Inform. 2020, 25, 1409–1418. [Google Scholar] [CrossRef] [PubMed]
- Jagadev, P.; Giri, L.I. Non-contact monitoring of human respiration using infrared thermography and machine learning. Infrared Phys. Technol. 2020, 104, 103117. [Google Scholar] [CrossRef]
- Lyra, S.; Mayer, L.; Ou, L.; Chen, D.; Timms, P.; Tay, A.; Chan, P.Y.; Ganse, B.; Leonhardt, S.; Hoog Antink, C. A Deep Learning-Based Camera Approach for Vital Sign Monitoring Using Thermography Images for ICU Patients. Sensors 2021, 21, 1495. [Google Scholar] [CrossRef]
- Vainer, B.G. A novel high-resolution method for the respiration rate and breathing waveforms remote monitoring. Ann. Biomed. Eng. 2018, 46, 960–971. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Bierling, B.; Feijs, L.; van Pul, C.; Andriessen, P. Monitoring the respiratory rate of preterm infants using an ultrathin film sensor embedded in the bedding: A comparative feasibility study. Physiol. Meas. 2019, 40, 045003. [Google Scholar] [CrossRef] [PubMed]
- Nizami, S.; Bekele, A.; Hozayen, M.; Greenwood, K.; Harrold, J.; Green, J.R. Comparing time and frequency domain estimation of neonatal respiratory rate using pressure-sensitive mats. In Proceedings of the 2017 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rochester, MN, USA, 7–10 May 2017; pp. 239–244. [Google Scholar]
- Martinez, M.; Stiefelhagen, R. Breathing rate monitoring during sleep from a depth camera under real-life conditions. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 1168–1176. [Google Scholar]
- Imano, W.; Kameyama, K.; Hollingdal, M.; Refsgaard, J.; Larsen, K.; Topp, C.; Kronborg, S.H.; Gade, J.D.; Dinesen, B. Non-Contact Respiratory Measurement Using a Depth Camera for Elderly People. Sensors 2020, 20, 6901. [Google Scholar] [CrossRef]
- Akbarian, S.; Ghahjaverestan, N.M.; Yadollahi, A.; Taati, B. Distinguishing obstructive versus central apneas in infrared video of sleep using deep learning: Validation study. J. Med. Internet Res. 2020, 22, e17252. [Google Scholar] [CrossRef]
- Goldman, L.J. Nasal airflow and thoracoabdominal motion in children using infrared thermographic video processing. Pediatr. Pulmonol. 2012, 47, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Julier, S.J.; Marquardt, N.; Bianchi-Berthouze, N. Robust tracking of respiratory rate in high-dynamic range scenes using mobile thermal imaging. Biomed. Opt. Express 2017, 8, 4480–4503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, A.K.; Heimann, K.; Jergus, K.; Orlikowsky, T.; Leonhardt, S. Neonatal non-contact respiratory monitoring based on real-time infrared thermography. Biomed. Eng. Online 2011, 10, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, C.B.; Heimann, K.; Venema, B.; Blazek, V.; Czaplik, M.; Leonhardt, S. Estimation of respiratory rate from thermal videos of preterm infants. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 3818–3821. [Google Scholar]
- Chan, P.; Wong, G.; Nguyen, T.D.; Nguyen, T.; McNeil, J.; Hopper, I. Estimation of respiratory rate using infrared video in an inpatient population: An observational study. J. Clin. Monit. Comput. 2020, 34, 1275–1284. [Google Scholar] [CrossRef]
- Kopaczka, M.; Oezkan, O.; Merhof, D. Face tracking and respiratory signal analysis for the detection of sleep apnea in thermal infrared videos with head movement. In International Conference on Image Analysis and Processing; Springer: Berlin/Heidelberg, Germany, 2017; pp. 163–170. [Google Scholar]
- Fei, J.; Pavlidis, I. Thermistor at a distance: Unobtrusive measurement of breathing. IEEE Trans. Biomed. Eng. 2009, 57, 988–998. [Google Scholar]
- Pereira, C.B.; Yu, X.; Czaplik, M.; Blazek, V.; Venema, B.; Leonhardt, S. Estimation of breathing rate in thermal imaging videos: A pilot study on healthy human subjects. J. Clin. Monit. Comput. 2017, 31, 1241–1254. [Google Scholar] [CrossRef]
- Pereira, C.B.; Yu, X.; Czaplik, M.; Rossaint, R.; Blazek, V.; Leonhardt, S. Remote monitoring of breathing dynamics using infrared thermography. Biomed. Opt. Express 2015, 6, 4378–4394. [Google Scholar] [CrossRef]
- Scebba, G.; Da Poian, G.; Karlen, W. Multispectral Video Fusion for Non-contact Monitoring of Respiratory Rate and Apnea. IEEE Trans. Biomed. Eng. 2020, 68, 350–359. [Google Scholar] [CrossRef]
- Hu, M.H.; Zhai, G.T.; Li, D.; Fan, Y.Z.; Chen, X.H.; Yang, X.K. Synergetic use of thermal and visible imaging techniques for contactless and unobtrusive breathing measurement. J. Biomed. Opt. 2017, 22, 036006. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Zhai, G.; Li, D.; Fan, Y.; Duan, H.; Zhu, W.; Yang, X. Combination of near-infrared and thermal imaging techniques for the remote and simultaneous measurements of breathing and heart rates under sleep situation. PLoS ONE 2018, 13, e0190466. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Hu, M.; Gao, Z.; Fan, L.; Dai, R.; Pan, Y.; Tang, W.; Zhai, G.; Lu, Y. Detection of respiratory infections using RGB-infrared sensors on portable device. IEEE Sens. J. 2020, 20, 13674–13681. [Google Scholar] [CrossRef]
- Pereira, C.B.; Yu, X.; Goos, T.; Reiss, I.; Orlikowsky, T.; Heimann, K.; Venema, B.; Blazek, V.; Leonhardt, S.; Teichmann, D. Noncontact monitoring of respiratory rate in newborn infants using thermal imaging. IEEE Trans. Biomed. Eng. 2018, 66, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Lorato, I.; Stuijk, S.; Meftah, M.; Kommers, D.; Andriessen, P.; van Pul, C.; de Haan, G. Multi-camera infrared thermography for infant respiration monitoring. Biomed. Opt. Express 2020, 11, 4848–4861. [Google Scholar] [CrossRef] [PubMed]
- Lorato, I.; Stuijk, S.; Meftah, M.; Kommers, D.; Andriessen, P.; van Pul, C.; de Haan, G. Towards Continuous Camera-Based Respiration Monitoring in Infants. Sensors 2021, 21, 2268. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.J. 157—Pathophysiology of Apnea of Prematurity. In Fetal and Neonatal Physiology, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1595–1604. [Google Scholar]
- Lorato, I.; Stuijk, S.; Meftah, M.; Verkruijsse, W.; de Haan, G. Camera-Based On-Line Short Cessation of Breathing Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019; pp. 1656–1663. [Google Scholar]
- Cattani, L.; Alinovi, D.; Ferrari, G.; Raheli, R.; Pavlidis, E.; Spagnoli, C.; Pisani, F. A wire-free, non-invasive, low-cost video processing-based approach to neonatal apnoea detection. In Proceedings of the 2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings, Rome, Italy, 17 October 2014; pp. 67–73. [Google Scholar]
- Poets, C.F. Apnea of Prematurity. In Sleep Disordered Breathing in Children: A Comprehensive Clinical Guide to Evaluation and Treatment; Kheirandish-Gozal, L., Gozal, D., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 263–278. [Google Scholar]
- Hochhausen, N.; Barbosa Pereira, C.; Leonhardt, S.; Rossaint, R.; Czaplik, M. Estimating respiratory rate in post-anesthesia care unit patients using infrared thermography: An observational study. Sensors 2018, 18, 1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Infant | Gestational Age | Postnatal Age | Total Duration | Number of |
---|---|---|---|---|
(Weeks + Days) | (Days) | (Minutes) | Video Segments | |
1 | 26 w 4 d | 59 | 4.84 | 4 |
2 | 38 w 5 d | 3 | 1.86 | 3 |
4 | 26 w 3 d | 59 | 26.93 | 28 |
6 | 40 w 1 d | 6 | 17.53 | 11 |
10 | 26 w 4 d | 77 | 24.48 | 16 |
11 | 26 w 4 d | 77 | 8.29 | 4 |
14 | 32 w 2 d | 11 | 3.62 | 3 |
15 | 35 w 1 d | 8 | 33.84 | 16 |
17 | 27 w 5 d | 16 | 10.78 | 2 |
Infant | PF | PM | MAE (BPM) | ||
---|---|---|---|---|---|
RF | RefRF | MR | |||
1 | 99.67% | 0.00% | 0.68 | 0.67 | 0.64 |
2 | 86.30% | 0.15% | 1.27 | 1.26 | 1.42 |
4 | 80.99% | 0.35% | 3.62 | 2.51 | 2.16 |
6 | 95.68% | 0.13% | 0.74 | 0.71 | 1.26 |
10 | 40.93% | 1.21% | 4.83 | 2.98 | 2.71 |
11 | 78.93% | 1.19% | 1.64 | 1.30 | 1.56 |
14 | 91.57% | 0.00% | 2.91 | 3.14 | 3.56 |
15 | 84.65% | 0.12% | 2.13 | 2.00 | 4.02 |
17 | 99.84% | 0.00% | 2.00 | 2.11 | 1.62 |
Average | 84.28% | 0.35% | 2.20 | 1.85 | 2.11 |
Infant | RF | RefRF | MR | ||||||
---|---|---|---|---|---|---|---|---|---|
ACC | SE | SP | ACC | SE | SP | ACC | SE | SP | |
1 | 95.49 | 82.92 | 96.36 | 97.74 | 95.38 | 98.33 | 86.09 | 0.00 | 100.00 |
2 | 88.28 | 66.78 | 98.09 | 97.12 | 96.76 | 97.51 | 76.46 | 23.83 | 97.83 |
4 | 91.25 | 61.61 | 97.32 | 97.02 | 95.85 | 97.15 | 76.82 | 31.05 | 86.42 |
6 | 95.42 | 94.04 | 96.07 | 98.43 | 99.18 | 98.23 | 87.09 | 79.31 | 87.10 |
10 | 89.21 | 15.96 | 98.45 | 97.69 | 95.68 | 97.94 | 82.98 | 5.73 | 92.37 |
11 | 95.53 | 74.09 | 99.86 | 99.86 | 95.70 | 99.65 | 87.31 | 6.42 | 93.09 |
14 | 98.16 | 86.81 | 100.00 | 98.31 | 89.51 | 99.83 | 84.11 | 18.64 | 94.71 |
15 | 95.93 | 80.82 | 98.31 | 98.88 | 96.41 | 99.18 | 76.83 | 22.37 | 81.53 |
17 | 99.85 | 97.52 | 99.89 | 99.86 | 96.43 | 99.98 | 91.12 | 22.46 | 92.50 |
Average | 94.35 | 73.39 | 98.26 | 98.32 | 95.66 | 98.64 | 83.20 | 23.31 | 91.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorato, I.; Stuijk, S.; Meftah, M.; Kommers, D.; Andriessen, P.; van Pul, C.; de Haan, G. Automatic Separation of Respiratory Flow from Motion in Thermal Videos for Infant Apnea Detection. Sensors 2021, 21, 6306. https://doi.org/10.3390/s21186306
Lorato I, Stuijk S, Meftah M, Kommers D, Andriessen P, van Pul C, de Haan G. Automatic Separation of Respiratory Flow from Motion in Thermal Videos for Infant Apnea Detection. Sensors. 2021; 21(18):6306. https://doi.org/10.3390/s21186306
Chicago/Turabian StyleLorato, Ilde, Sander Stuijk, Mohammed Meftah, Deedee Kommers, Peter Andriessen, Carola van Pul, and Gerard de Haan. 2021. "Automatic Separation of Respiratory Flow from Motion in Thermal Videos for Infant Apnea Detection" Sensors 21, no. 18: 6306. https://doi.org/10.3390/s21186306
APA StyleLorato, I., Stuijk, S., Meftah, M., Kommers, D., Andriessen, P., van Pul, C., & de Haan, G. (2021). Automatic Separation of Respiratory Flow from Motion in Thermal Videos for Infant Apnea Detection. Sensors, 21(18), 6306. https://doi.org/10.3390/s21186306