On the Unification of Common Actigraphic Data Scoring Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Unified Framework Proposal
- 1.
- Collapsing data into epochs.
- 2.
- Linear convolution with empirically chosen coefficients:
- 3.
- Rescoring (optional), e.g. as in [21]: “After at least 4 min scored as wake, the next 1 min scored as sleep is rescored wake […]”.
- 1.
- Properly treating the first step as downsampling, which is a well-known signal processing procedure. This observation allows, e.g., to identify aliasing introduced by the procedures applied thus far, and design correct procedures.
- 2.
- Observing that the coefficients, used in different algorithms for the convolution step— in Equation (1)—in all cases actually result in a low-pass finite impulse response (FIR) filtering with very similar cutoff frequencies. This observation allows for an informed design of these filters for new algorithms using signal processing knowledge and tools, and an efficient analysis of the current approaches.
2.2. Defining Popular Actigraphy Algorithms under Unified Framework
2.2.1. Cole-Kripke Algorithm Family
2.2.2. Sazonov Algorithm
- 1.
- 2.
2.2.3. Sadeh Algorithm
3. Results
Properties of FIR Filters from the Cole-Kripke Algorithm Family
- 1.
- Discussed algorithms include a preprocessing stage, which consists of signal downsampling, but downsampling can have nontrivial sample selection. This procedure is not a standard resampling method and may introduce aliasing artifacts.
- 2.
- Sample selection metric (e.g., maximum, average) changes the overall signal weakening constant value, but the overall low-pass filtering cutoff frequency remains the same.
- 3.
- Weakening stage depends on certain hardware factors (like, e.g., sampling frequency).
- 4.
- Modern filter design tools could be used to design a low-pass filter instead of an empirical coefficient fit. Such a potentially unified algorithm design could be easily adaptable to different actigraphy hardware and sampling rates.
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FIR | Finite impulse response |
PSG | Polysomnography |
ZCM | Zero-crossing mode |
TAT | Time above threshold |
DI | Digital integration |
AASM | American Academy of Sleep Medicine |
UCSD | University of California San Diego |
Appendix A. Researched Algorithms
Appendix A.1. Cole-Kripke Algorithm
Appendix A.2. Variations of the Cole-Kripke Algorithm: Webster, Scripps Clinic and UCSD Algorithms
Appendix A.3. Sadeh Algorithm
Appendix A.4. Sazonov Algorithm
References
- Ko, P.R.T.; Kientz, J.A.; Choe, E.K.; Kay, M.; Landis, C.A.; Watson, N.F. Consumer sleep technologies: A review of the landscape. J. Clin. Sleep Med. 2015, 11, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcroft, W.; Pollak, C.P. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 2003, 26, 342–392. [Google Scholar] [CrossRef] [Green Version]
- Telfer, S.; Spence, W.D.; Solomonidis, S.E. The potential for actigraphy to be used as an indicator of sitting discomfort. Hum. Factors 2009, 51, 694–704. [Google Scholar] [CrossRef]
- Calogiuri, G.; Weydahl, A.; Carandente, F. Methodological Issues for Studying the Rest–Activity Cycle and Sleep Disturbances: A Chronobiological Approach Using Actigraphy Data. Biol. Res. Nurs. 2013, 15, 5–12. [Google Scholar] [CrossRef]
- Brønd, J.C.; Andersen, L.B.; Arvidsson, D. Generating ActiGraph counts from raw acceleration recorded by an alternative monitor. Med. Sci. Sports Exerc. 2017, 49, 2351–2360. [Google Scholar] [CrossRef]
- Smith, M.T.; McCrae, C.S.; Cheung, J.; Martin, J.L.; Harrod, C.G.; Heald, J.L.; Carden, K.A. Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: An American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J. Clin. Sleep Med. 2018, 14, 1209–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, T.; Sunarya, U.; Yeo, M.; Hwang, B.; Koo, Y.S.; Park, C. Deep-ACTINet: End-to-End Deep Learning Architecture for Automatic Sleep-Wake Detection Using Wrist Actigraphy. Electronics 2019, 8, 1461. [Google Scholar] [CrossRef] [Green Version]
- Khademi, A.; Yasser, E.M.; Master, L.; Buxton, O.M.; Honavar, V.G. Personalized sleep parameters estimation from actigraphy: A machine learning approach. Nat. Sci. Sleep 2019, 11, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zhang, Y.; Jiang, F.; Zhao, H. A novel machine learning unsupervised algorithm for sleep/wake identification using actigraphy. Chronobiol. Int. 2020, 37, 1002–1015. [Google Scholar] [CrossRef] [PubMed]
- Tilmanne, J.; Urbain, J.; Kothare, M.V.; Wouwer, A.V.; Kothare, S.V. Algorithms for sleep–wake identification using actigraphy: A comparative study and new results. J. Sleep Res. 2009, 18, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.B.; Kripke, D.F.; Messin, S.; Mullaney, D.J.; Wyborney, G. An Activity-Based Sleep Monitor System for Ambulatory Use. Sleep 1982, 5, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Sadeh, A.; Alster, J.; Urbach, D.; Lavie, P. Actigraphically-based automatic bedtime sleep-wake scoring: Validity and clinical applications. J. Ambul. Monit. 1989, 2, 209–216. [Google Scholar]
- Sadeh, A.; Sharkey, M.; Carskadon, M.A. Activity-Based Sleep-Wake Identification: An Empirical Test of Methodological Issues. Sleep 1994, 17, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Sadeh, A.; Acebo, C.; Seifer, R.; Aytur, S.; Carskadon, M.A. Activity-based assessment of sleep-wake patterns during the 1st year of life. Infant Behav. Dev. 1995, 18, 329–337. [Google Scholar] [CrossRef]
- Sazonov, E.; Sazonova, N.; Schuckers, S.; Neuman, M.; Chime Study Group. Activity-based sleep–wake identification in infants. Physiol. Meas. 2004, 25, 1291–1304. [Google Scholar] [CrossRef] [Green Version]
- Jean-Louis, G.; Kripke, D.F.; Mason, W.J.; Elliott, J.A.; Youngstedt, S.D. Sleep estimation from wrist movement quantified by different actigraphic modalities. J. Neurosci. Methods 2001, 105, 185–191. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, G.H.; Kim, C.S.; Kim, W.S.; Chung, Y.S.; Chung, S.; Lee, S.A. Comparison of three actigraphic algorithms used to evaluate sleep in patients with obstructive sleep apnea. Sleep Breath. 2013, 17, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Kripke, D.F.; Hahn, E.K.; Grizas, A.P.; Wadiak, K.H.; Loving, R.T.; Poceta, J.S.; Shadan, F.F.; Cronin, J.W.; Kline, L.E. Wrist actigraphic scoring for sleep laboratory patients: Algorithm development. J. Sleep Res. 2010, 19, 612–619. [Google Scholar] [CrossRef]
- Palotti, J.; Mall, R.; Aupetit, M.; Rueschman, M.; Singh, M.; Sathyanarayana, A.; Taheri, S.; Fernandez-Luque, L. Benchmark on a large cohort for sleep-wake classification with machine learning techniques. NPJ Digit. Med. 2019, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Biegański, P.; Stróż, A.; Duszyk, A.; Dovgialo, M.; Durka, P. On the possibility of mathematical unification for the currently applied analysis of actigraphic recordings. Adv. Intell. Syst. Comput. 2021, (in press). [Google Scholar]
- Cole, R.J.; Kripke, D.F.; Gruen, W.; Mullaney, D.J.; Gillin, J.C. Automatic Sleep/Wake Identification From Wrist Activity. Sleep 1992, 15, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Fabijańska, A. Variance filter for edge detection and edge-based image segmentation. In Proceedings of the 2011 Proceedings of 7th International Conference on Perspective Technologies and Methods in MEMS Design, MEMSTECH 2011, Polyana, Ukraine, 11–14 May 2011. [Google Scholar]
- Quante, M.; Kaplan, E.R.; Cailler, M.; Rueschman, M.; Wang, R.; Weng, J.; Taveras, E.M.; Redline, S. Actigraphy-based sleep estimation in adolescents and adults: A comparison with polysomnography using two scoring algorithms. Nat. Sci. Sleep 2018, 10, 13–20. [Google Scholar] [CrossRef] [Green Version]
- de Souza, L.; Benedito-Silva, A.A.; Pires, M.L.; Poyares, D.; Tufik, S.; Calil, H.M. Further validation of actigraphy for sleep studies. Sleep 2003, 26, 81–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuman, M.R.; Watson, H.; Mendenhall, R.S.; Zoldak, J.T.; Fiore, J.M.D.; Peucker, M.; Baird, T.M.; Crowell, D.H.; Hoppenbrouwers, T.T.; Hufford, D.; et al. Cardiopulmonary monitoring at home: The CHIME monitor. Physiol. Meas. 2001, 22, 267–286. [Google Scholar] [CrossRef] [PubMed]
- Crowell, D.H.; Brooks, L.J.; Colton, T.; Corwin, M.J.; Hoppenbrouwers, T.T.; Hunt, C.E.; Kapuniai, L.E.; Lister, G.; Neuman, M.R.; Peucker, M.; et al. Infant Polysomnography: Reliability. Sleep 1997, 20, 553–560. [Google Scholar] [PubMed]
Algorithm | Low-Pass Cutoff | Period |
---|---|---|
Cole-Kripke (max 10 s nonoverlapping) | 0.00127 Hz | 13 m 08 s |
Cole-Kripke (max 10 s overlapping) | 0.00119 Hz | 14 m 02 s |
Cole-Kripke (max 30 s nonoverlapping) | 0.00107 Hz | 15 m 31 s |
Cole-Kripke (mean 60 s) | 0.00112 Hz | 14 m 50 s |
Webster (max 60 s overlapping) | 0.00104 Hz | 16 m 00 s |
Webster (max 10 s overlapping) | 0.00078 Hz | 21 m 20 s |
UCSD | 0.00150 Hz | 11 m 09 s |
Sazonov | 0.00153 Hz | 10 m 53 s |
Scripps Clinic | 0.00143 Hz | 11 m 38 s |
Average: | Hz | 14 m 17 s ± 3 m 04 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biegański, P.; Stróż, A.; Dovgialo, M.; Duszyk-Bogorodzka, A.; Durka, P. On the Unification of Common Actigraphic Data Scoring Algorithms. Sensors 2021, 21, 6313. https://doi.org/10.3390/s21186313
Biegański P, Stróż A, Dovgialo M, Duszyk-Bogorodzka A, Durka P. On the Unification of Common Actigraphic Data Scoring Algorithms. Sensors. 2021; 21(18):6313. https://doi.org/10.3390/s21186313
Chicago/Turabian StyleBiegański, Piotr, Anna Stróż, Marian Dovgialo, Anna Duszyk-Bogorodzka, and Piotr Durka. 2021. "On the Unification of Common Actigraphic Data Scoring Algorithms" Sensors 21, no. 18: 6313. https://doi.org/10.3390/s21186313
APA StyleBiegański, P., Stróż, A., Dovgialo, M., Duszyk-Bogorodzka, A., & Durka, P. (2021). On the Unification of Common Actigraphic Data Scoring Algorithms. Sensors, 21(18), 6313. https://doi.org/10.3390/s21186313