Validity of Peripheral Oxygen Saturation Measurements with the Garmin Fēnix® 5X Plus Wearable Device at 4559 m
Abstract
:1. Introduction
2. Methods
2.1. Study Approvals
2.2. Study Population
2.3. Study Protocol
2.4. Measurement of SO2
3. Statistical Analysis
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rienzo, M.D.; Mukkamala, R. Wearable and Nearable Biosensors and Systems for Healthcare. Sensors 2021, 21, 1921. [Google Scholar] [CrossRef]
- Dunn, J.; Runge, R.; Snyder, M. Wearables and the medical revolution. Pers. Med. 2018, 15, 429–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dünnwald, T.; Kienast, R.; Niederseer, D.; Burtscher, M. The Use of Pulse Oximetry in the Assessment of Acclimatization to High Altitude. Sensors 2021, 21, 1263. [Google Scholar] [CrossRef]
- Berger, M.M.; Schiefer, L.M.; Treff, G.; Sareban, M.; Swenson, E.; Bärtsch, P. Acute high-altitude illness: Updated principles of pathophysiology, prevention, and treatment. Dtsch. Z. Sportmed. 2020, 71, 267–274. [Google Scholar] [CrossRef]
- Levitan, R.M. Pulse Oximetry as a Biomarker for Early Identification and Hospitalization of COVID-19 Pneumonia. Acad. Emerg. Med. 2020, 27, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Zeserson, E.; Goodgame, B.; Hess, J.D.; Schultz, K.; Hoon, C.; Lamb, K.; Maheshwari, V.; Johnson, S.; Papas, M.; Reed, J.; et al. Correlation of Venous Blood Gas and Pulse Oximetry With Arterial Blood Gas in the Undifferentiated Critically Ill Patient. J. Intensive Care Med. 2018, 33, 176–181. [Google Scholar] [CrossRef]
- Luks, A.M.; Swenson, E.R. Pulse Oximetry at High Altitude. High. Alt. Med. Biol. 2011, 12, 109–119. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chan, M.-C.; Chen, C.-Y.; Lin, B.-S. Novel Wearable and Wireless Ring-Type Pulse Oximeter with Multi-Detectors. Sensors 2014, 14, 17586–17599. [Google Scholar] [CrossRef] [Green Version]
- Aroganam, G.; Manivannan, N.; Harrison, D. Review on Wearable Technology Sensors Used in Consumer Sport Applications. Sensors 2019, 19, 1983. [Google Scholar] [CrossRef] [Green Version]
- Hermand, E.; Coll, C.; Richalet, J.P.; Lhuissier, F.J. Accuracy and Reliability of Pulse O2 Saturation Measured by a Wrist-worn Oximeter. Int. J. Sports Med. 2021. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Fuller, D.; Colwell, E.; Low, J.; Orychock, K.; Tobin, M.A.; Simango, B.; Buote, R.; Van Heerden, D.; Luan, H.; Cullen, K.; et al. Reliability and Validity of Commercially Available Wearable Devices for Measuring Steps, Energy Expenditure, and Heart Rate: Systematic Review. JMIR mHealth uHealth 2020, 8, e18694. [Google Scholar] [CrossRef] [PubMed]
- Navalta, J.W.; Montes, J.; Bodell, N.G.; Salatto, R.W.; Manning, J.W.; DeBeliso, M. Concurrent heart rate validity of wearable technology devices during trail running. PLoS ONE 2020, 15, e0238569. [Google Scholar] [CrossRef] [PubMed]
- Lauterbach, C.J.; Romano, P.A.; Greisler, L.A.; Brindle, R.A.; Ford, K.R.; Kuennen, M.R. Accuracy and Reliability of Commercial Wrist-Worn Pulse Oximeter During Normobaric Hypoxia Exposure Under Resting Conditions. Res. Q. Exerc. Sport 2021, 92, 549–558. [Google Scholar] [CrossRef]
- Kirszenblat, R.; Edouard, P. Validation of the Withings ScanWatch as a Wrist-Worn Reflective Pulse Oximeter: Prospective Interventional Clinical Study. J. Med. Internet Res. 2021, 23, e27503. [Google Scholar] [CrossRef] [PubMed]
- Buchfuhrer, M.J.; Hansen, J.E.; Robinson, T.E.; Sue, D.Y.; Wasserman, K.; Whipp, B.J. Optimizing the exercise protocol for cardiopulmonary assessment. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 1558–1564. [Google Scholar] [CrossRef]
- Kuenzel, A.; Marshall, B.; Verges, S.; Anholm, J.D. Positional Changes in Arterial Oxygen Saturation and End-Tidal Carbon Dioxide at High Altitude: Medex 2015. High. Alt. Med. Biol. 2020, 21, 144–151. [Google Scholar] [CrossRef]
- Beidleman, B.A.; Muza, S.R.; Fulco, C.S.; Rock, P.B.; Cymerman, A. Validation of a shortened electronic version of the environmental symptoms questionnaire. High. Alt. Med. Biol. 2007, 8, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Roach, R.C.; Hackett, P.H.; Oelz, O.; Bärtsch, P.; Luks, A.M.; MacInnis, M.J.; Baillie, J.K.; Lake Louise AMS Score Consensus Committee. The 2018 Lake Louise Acute Mountain Sickness Score. High. Alt. Med. Biol. 2018, 19, 4–6. [Google Scholar] [CrossRef]
- Sampson, J.B.; Cymerman, A.; Burse, R.L.; Maher, J.T.; Rock, P.B. Procedures for the measurement of acute mountain sickness. Aviat. Space Environ. Med. 1983, 54, 1063–1073. [Google Scholar]
- Macholz, F.; Sareban, M.; Berger, M.M. Diagnosing Acute Mountain Sickness. JAMA 2018, 319, 1509. [Google Scholar] [CrossRef]
- Maggiorini, M.; Müller, A.; Hofstetter, D.; Bärtsch, P.; Oelz, O. Assessment of acute mountain sickness by different score protocols in the Swiss Alps. Aviat. Space Environ. Med. 1998, 69, 1186–1192. [Google Scholar]
- McGrow, K.O.; Wong, S.P. Forming inferences about some intraclass correlation coefficients. Psychol Methods 1996, 1, 30–46. [Google Scholar] [CrossRef]
- De Vet, H.C.W.; Terwee, C.B.; Mokkink, L.B.; Knoll, D.L. Measurement in Medicine: A Practical Guide; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Fokkema, T.; Kooiman, T.J.; Krijnen, W.P.; VANDERSchans, C.P.; DEGroot, M. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed. Med. Sci. Sports Exerc. 2017, 49, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Comparing methods of measurement: Why plotting difference against standard method is misleading. Lancet 1995, 346, 1085–1087. [Google Scholar] [CrossRef] [Green Version]
- Buekers, J.; Theunis, J.; De Boever, P.; Vaes, A.W.; Koopman, M.; Janssen, E.V.; Wouters, E.F.; Spruit, M.A.; Aerts, J.-M. Wearable Finger Pulse Oximetry for Continuous Oxygen Saturation Measurements during Daily Home Routines of Patients with Chronic Obstructive Pulmonary Disease (COPD) Over One Week: Observational Study. JMIR mHealth uHealth 2019, 7, e12866. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Netzer, N.C.; Rausch, L.; Eliasson, A.H.; Gatterer, H.; Friess, M.; Burtscher, M.; Pramsohler, S. SpO2 and Heart Rate During a Real Hike at Altitude Are Significantly Different than at Its Simulation in Normobaric Hypoxia. Front. Physiol. 2017, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Saugy, J.J.; Schmitt, L.; Cejuela, R.; Faiss, R.; Hauser, A.; Wehrlin, J.P.; Rudaz, B.; Delessert, A.; Robinson, N.; Millet, G.P. Comparison of “Live High-Train Low” in Normobaric versus Hypobaric Hypoxia. PLoS ONE 2014, 9, e114418. [Google Scholar] [CrossRef] [Green Version]
- Mandolesi, G.; Avancini, G.; Bartesaghi, M.; Bernardi, E.; Pomidori, L.; Cogo, A. Long-Term Monitoring of Oxygen Saturation at Altitude Can Be Useful in Predicting the Subsequent Development of Moderate-to-Severe Acute Mountain Sickness. Wilderness Environ. Med. 2014, 25, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Mairbäurl, H.; Dehnert, C.; Macholz, F.; Dankl, D.; Sareban, M.; Berger, M.M. The Hen or the Egg: Impaired Alveolar Oxygen Diffusion and Acute High-altitude Illness? Int. J. Mol. Sci. 2019, 20, 4105. [Google Scholar] [CrossRef] [Green Version]
- Luks, A.M.; Swenson, E.R. Pulse Oximetry for Monitoring Patients with COVID-19 at Home. Potential Pitfalls and Practical Guidance. Ann. Am. Thorac. Soc. 2020, 17, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
- Quaresima, V.; Ferrari, M. COVID-19: Efficacy of prehospital pulse oximetry for early detection of silent hypoxemia. Crit. Care 2020, 24, 501. [Google Scholar] [CrossRef] [PubMed]
- Casalino, G.; Castellano, G.; Zaza, G. A mHealth solution for contact-less self-monitoring of blood oxygen saturation. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–7. [Google Scholar]
Sex | 11 male, 2 female |
Age (years) | 57 ± 6 |
Body mass (kg) | 76 ± 11 |
Body height (cm) | 175 ± 7 |
Body mass index (kg/m2) | 24.8 ± 3.3 |
⩒O2max (ml/min/kg) | 39 ± 9 |
ICC | MAPE [%] | Pearson’s r | p-Value | |
---|---|---|---|---|
GAR vs. COV (n = 49) | 0.661 | 6.81 | 0.537 | 0.011 * |
GAR vs. ABG (n = 37) | 0.549 | 9.77 | 0.380 | <0.001 * |
COV vs. ABG (n = 26) | 0.883 | 6.15 | 0.904 | 0.979 |
Dependent Variable | SO2 Derived From | Pearson’s r | p-Value | R2 |
---|---|---|---|---|
Severity LLS | GAR | −0.167 | 0.251 | 0.007 |
COV | −0.541 | <0.001 * | 0.278 | |
ABG | −0.809 | <0.001 * | 0.644 | |
AMS positive | GAR | 0.073 | 0.618 | −0.016 |
COV | −0.123 | 0.399 | −0.006 | |
ABG | −0.304 | 0.068 | 0.066 | |
HAPE positive | GAR | −0.034 | 0.814 | −0.020 |
COV | −0.115 | 0.431 | −0.008 | |
ABG | −0.345 | 0.036 * | 0.094 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiefer, L.M.; Treff, G.; Treff, F.; Schmidt, P.; Schäfer, L.; Niebauer, J.; Swenson, K.E.; Swenson, E.R.; Berger, M.M.; Sareban, M. Validity of Peripheral Oxygen Saturation Measurements with the Garmin Fēnix® 5X Plus Wearable Device at 4559 m. Sensors 2021, 21, 6363. https://doi.org/10.3390/s21196363
Schiefer LM, Treff G, Treff F, Schmidt P, Schäfer L, Niebauer J, Swenson KE, Swenson ER, Berger MM, Sareban M. Validity of Peripheral Oxygen Saturation Measurements with the Garmin Fēnix® 5X Plus Wearable Device at 4559 m. Sensors. 2021; 21(19):6363. https://doi.org/10.3390/s21196363
Chicago/Turabian StyleSchiefer, Lisa M., Gunnar Treff, Franziska Treff, Peter Schmidt, Larissa Schäfer, Josef Niebauer, Kai E. Swenson, Erik R. Swenson, Marc M. Berger, and Mahdi Sareban. 2021. "Validity of Peripheral Oxygen Saturation Measurements with the Garmin Fēnix® 5X Plus Wearable Device at 4559 m" Sensors 21, no. 19: 6363. https://doi.org/10.3390/s21196363
APA StyleSchiefer, L. M., Treff, G., Treff, F., Schmidt, P., Schäfer, L., Niebauer, J., Swenson, K. E., Swenson, E. R., Berger, M. M., & Sareban, M. (2021). Validity of Peripheral Oxygen Saturation Measurements with the Garmin Fēnix® 5X Plus Wearable Device at 4559 m. Sensors, 21(19), 6363. https://doi.org/10.3390/s21196363