Color-Ratio Maps Enhanced Optical Filter Design and Its Application in Green Pepper Segmentation
Abstract
:1. Introduction
- We developed the computational optics framework for co-design of an optical filter and segmentation algorithm that can achieve a better image sensor system for green pepper segmentation. The whole framework simultaneously optimizes the front-end optical device (optical filter) and the back-end green pepper segmentation algorithm.
- We introduced the color-ratio maps as additional input feature maps to improve the green pepper segmentation results. The experimental results demonstrate the benefits of the improved performance by color-ratio maps.
2. Related Work
2.1. Color Space
2.2. Application of Optical Filter
2.3. Computational Optics
3. Proposed Method
3.1. Filtered RGB Camera Module
3.1.1. Optical Filter Layer
3.1.2. CSR Layer
3.2. Color-Ratio Maps
3.3. Segmentation Module
3.4. Loss Function and Physical Constraint
4. Experimental Results and Analysis
4.1. Hyperspectral Dataset
4.2. Experimental Settings
4.3. Experimental Results
4.3.1. Evaluation Results
4.3.2. Effectiveness of Color-Ratio Maps
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CSR | Camera Spectral Response |
CFA | Color Filter Array |
TR | Transmittance Curve |
CRM | Color-Ratio Map |
OF | Optical Filter |
NF | No Filter |
References
- Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Benavides, M.; Cantón-Garbín, M.; Sánchez-Molina, J.; Rodríguez, F. Automatic Tomato and Peduncle Location System Based on Computer Vision for Use in Robotized Harvesting. Appl. Sci. 2020, 10, 5887. [Google Scholar] [CrossRef]
- Behmann, J.; Mahlein, A.K.; Rumpf, T.; Römer, C.; Plümer, L. A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precis. Agric. 2015, 16, 239–260. [Google Scholar] [CrossRef]
- Hemming, J.; Ruizendaal, J.; Hofstee, J.W.; Van Henten, E.J. Fruit detectability analysis for different camera positions in sweet-pepper. Sensors 2014, 14, 6032–6044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhu, Q.; Huang, M.; Guo, Y.; Qin, J. Pose estimation of sweet pepper through symmetry axis detection. Sensors 2018, 18, 3083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Kurihara, T.; Zhan, S. Optical Filter Net: A Spectral-Aware RGB Camera Framework for Effective Green Pepper Segmentation. IEEE Access 2021, 9, 90142–90152. [Google Scholar] [CrossRef]
- Naoshi, K.; Shunzo, E. Studies on fruit recognizing visual sensor (i) calculation of the most suitable wavelength bands and discriminating experiment. J. Jpn. Soc. Agric. Mach. 1987, 49, 563–570. (In Japanese) [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI 2015), Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Omachi, M.; Omachi, S. Traffic light detection with color and edge information. In Proceedings of the 2nd IEEE International Conference on Computer Science and Information Technology, Beijing, China, 8–11 August 2009; pp. 284–287. [Google Scholar]
- Zhao, C.; Lee, W.S.; He, D. Immature green citrus detection based on colour feature and sum of absolute transformed difference (SATD) using colour images in the citrus grove. Comput. Electron. Agric. 2016, 124, 243–253. [Google Scholar] [CrossRef]
- Ohta, Y.I.; Kanade, T.; Sakai, T. Color information for region segmentation. Comput. Graph. Image Process. 1980, 13, 222–241. [Google Scholar] [CrossRef]
- Moran, S.; McDonagh, S.; Slabaugh, G. Curl: Neural curve layers for global image enhancement. In Proceedings of the 25th International Conference on Pattern Recognition (ICPR 2020), Milan, Italy, 10–15 January 2021; pp. 9796–9803. [Google Scholar]
- Monno, Y.; Kikuchi, S.; Tanaka, M.; Okutomi, M. A practical one-shot multispectral imaging system using a single image sensor. IEEE Trans. Image Process. 2015, 24, 3048–3059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frentress, Z.; Young, L.; Edwards, H. Field photometer with nine-element filter wheel. Appl. Opt. 1964, 3, 303–308. [Google Scholar] [CrossRef]
- Thomas, J.B.; Lapray, P.J.; Gouton, P.; Clerc, C. Spectral characterization of a prototype SFA camera for joint visible and NIR acquisition. Sensors 2016, 16, 993. [Google Scholar] [CrossRef]
- Lapray, P.J.; Wang, X.; Thomas, J.B.; Gouton, P. Multispectral filter arrays: Recent advances and practical implementation. Sensors 2014, 14, 21626–21659. [Google Scholar] [CrossRef] [Green Version]
- Nakauchi, S.; Nishino, K.; Yamashita, T. Selection of optimal combinations of band-pass filters for ice detection by hyperspectral imaging. Opt. Express 2012, 20, 986–1000. [Google Scholar] [CrossRef]
- Bauer, J.R.; Bruins, A.A.; Hardeberg, J.Y.; Verdaasdonk, R.M. A spectral filter array camera for clinical monitoring and diagnosis: Proof of concept for skin oxygenation imaging. J. Imaging 2019, 5, 66. [Google Scholar] [CrossRef] [Green Version]
- Ono, S. Snapshot multispectral imaging using a pixel-wise polarization color image sensor. Opt. Express 2020, 28, 34536–34573. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A. Learning sensor multiplexing design through back-propagation. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 3081–3089. [Google Scholar]
- Wu, Y.; Boominathan, V.; Chen, H.; Sankaranarayanan, A.; Veeraraghavan, A. Phasecam3d—Learning phase masks for passive single view depth estimation. In Proceedings of the 2019 IEEE International Conference on Computational Photography (ICCP 2019), Tokyo, Japan, 15–17 May 2019; pp. 1–12. [Google Scholar]
- Chang, J.; Wetzstein, G. Deep optics for monocular depth estimation and 3d object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 16–20 June 2019; pp. 10193–10202. [Google Scholar]
- Metzler, C.A.; Ikoma, H.; Peng, Y.; Wetzstein, G. Deep optics for single-shot high-dynamic-range imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1375–1385. [Google Scholar]
- Nie, S.; Gu, L.; Zheng, Y.; Lam, A.; Ono, N.; Sato, I. Deeply learned filter response functions for hyperspectral reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4767–4776. [Google Scholar]
- Zou, Y.; Fu, Y.; Zheng, Y.; Li, W. CSR-Net: Camera Spectral Response Network for Dimensionality Reduction and Classification in Hyperspectral Imagery. Remote Sens. 2020, 12, 3294. [Google Scholar] [CrossRef]
- Zhu, Y.; Finlayson, G.D. A Mathematical Investigation into the Design of Prefilters That Make Cameras More Colorimetric. Sensors 2020, 20, 6882. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Wintringham, W. Color television and colorimetry. Proc. IRE 1951, 39, 1135–1172. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning(ICML 2010), Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Dumoulin, V.; Visin, F. A guide to convolution arithmetic for deep learning. arXiv 2016, arXiv:1603.07285. [Google Scholar]
- Behmann, J.; Acebron, K.; Emin, D.; Bennertz, S.; Matsubara, S.; Thomas, S.; Bohnenkamp, D.; Kuska, M.T.; Jussila, J.; Salo, H.; et al. Specim IQ: Evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection. Sensors 2018, 18, 441. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Andrés, J.; Romero, J.; Nieves, J.L.; Lee, R.L. Color and spectral analysis of daylight in southern Europe. JOSA A 2001, 18, 1325–1335. [Google Scholar] [CrossRef]
- Nascimento, S.M.; Amano, K.; Foster, D.H. Spatial distributions of local illumination color in natural scenes. Vis. Res. 2016, 120, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Wada, K. Labelme: Image Polygonal Annotation with Python. Available online: https://github.com/wkentaro/labelme (accessed on 20 June 2021).
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Triton 5.0 MP Model (IMX264). Available online: https://thinklucid.com/product/triton-5-mp-imx264/ (accessed on 15 September 2021).
- Shoaf, W.T.; Lium, B.W. Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Limnol. Oceanogr. 1976, 21, 926–928. [Google Scholar] [CrossRef]
- Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning Filters for Efficient ConvNets. In Proceedings of the 5th International Conference on Learning Representations (ICLR 2017), Toulon, France, 24–26 April 2017. [Google Scholar]
U-Net-Like Encoder | U-Net-Like Decoder | ||||
---|---|---|---|---|---|
Layer | Details | Size | Layer | Details | Size |
input | R,G,B feature map+ color-ratio map | 256 × 256 × 12 | upsampling1 | 2 × 2 upsample of block5 concatenate with block4 | 32 × 32 × 1024 |
block1 | {conv(3 × 3, pad = 1) + Batch Norm ReLU} × 2 | 256 × 256 × 64 | block6_1 | {conv(3 × 3, pad = 1) + Batch Norm ReLU} × 2 | 32 × 32 × 256 |
pool1 | 2 × 2 max pool; stride 2 | 128 × 128 × 64 | upsampling2 | 2 × 2 upsample of block6 concatenate with block3 | 64 × 64 × 512 |
block2 | {conv(3 × 3, pad = 1) + Batch Norm ReLU} × 2 | 128 × 128 × 128 | block7 | {conv(3 × 3, pad = 1) + Batch Norm ReLU} × 2 | 64 × 64 × 128 |
pool2 | 2 × 2 max pool; stride 2 | 64 × 64 × 128 | upsampling3 | 2 × 2 upsample of block7 concatenate with block2 | 128 × 128 × 256 |
block3 | {conv(3 × 3, pad = 1) + Batch Norm ReLU} × 2 | 64 × 64 × 256 | block8 | {conv(3 × 3, pad = 1) + Batch Norm ReLU}× 2 | 128 × 128 × 64 |
pool3 | 2 × 2 max pool; stride 2 | 32 × 32 × 256 | upsampling4 | 2 × 2 upsample of block8 concatenate with block1 | 256 × 256 × 128 |
block4 | {conv(3 × 3, pad = 1) + Batch Norm ReLU} × 2 | 32 × 32 × 512 | block9 | {conv(3 × 3, pad = 1) + Batch Norm ReLU} × 2 | 256 × 256 × 64 |
pool4 | 2 × 2 max pool; stride 2 | 16 × 16 × 512 | outconv | 1 × 1 × 1 | 256 × 256 × 1 |
block5 | {conv(3 × 3, pad = 1) + Batch Norm ReLU} × 2 | 16 × 16 × 512 |
Models | Smoothness | Max | mIoU | F1 |
---|---|---|---|---|
OF-CRM | 1.725 | 0.877 | 0.864 | |
2.615 | 0.878 | 0.874 | ||
4.470 | 0.899 | 0.891 | ||
1.725 | 0.884 | 0.875 | ||
2.615 | 0.866 | 0.853 | ||
4.470 | 0.887 | 0.869 | ||
1.725 | 0.877 | 0.862 | ||
2.615 | 0.874 | 0.862 | ||
4.470 | 0.877 | 0.864 | ||
OF [6] | 1.725 | 0.875 | 0.858 | |
2.615 | 0.870 | 0.855 | ||
4.470 | 0.869 | 0.846 | ||
1.725 | 0.850 | 0.823 | ||
2.615 | 0.865 | 0.849 | ||
4.470 | 0.877 | 0.862 | ||
1.725 | 0.864 | 0.841 | ||
2.615 | 0.868 | 0.845 | ||
4.470 | 0.852 | 0.822 | ||
NF | N/A | 1.725 | 0.867 | 0.853 |
2.615 | 0.857 | 0.832 | ||
4.470 | 0.823 | 0.815 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Kurihara, T.; Zhan, S. Color-Ratio Maps Enhanced Optical Filter Design and Its Application in Green Pepper Segmentation. Sensors 2021, 21, 6437. https://doi.org/10.3390/s21196437
Yu J, Kurihara T, Zhan S. Color-Ratio Maps Enhanced Optical Filter Design and Its Application in Green Pepper Segmentation. Sensors. 2021; 21(19):6437. https://doi.org/10.3390/s21196437
Chicago/Turabian StyleYu, Jun, Toru Kurihara, and Shu Zhan. 2021. "Color-Ratio Maps Enhanced Optical Filter Design and Its Application in Green Pepper Segmentation" Sensors 21, no. 19: 6437. https://doi.org/10.3390/s21196437
APA StyleYu, J., Kurihara, T., & Zhan, S. (2021). Color-Ratio Maps Enhanced Optical Filter Design and Its Application in Green Pepper Segmentation. Sensors, 21(19), 6437. https://doi.org/10.3390/s21196437