Deep Learning-Based Analysis of Face Images as a Screening Tool for Genetic Syndromes
Abstract
:1. Introduction
2. State of the Art
3. Materials and Methods
3.1. Picture Database
3.2. Face Classification
3.3. Geometric Analyses
4. Results
5. Discussion
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Rodwell, C.; Aymé, S. (Eds.) 2014 Report on the State of the Art of Rare Disease Activities in Europe. July 2014. [Google Scholar]
- Nguengang Wakap, S.; Lambert, D.M.; Olry, A.; Rodwell, C.; Gueydan, C.; Lanneau, V.; Murphy, D.; Le Cam, Y.; Rath, A. Estimating cumulative point prevalence of rare diseases: Analysis of the Orphanet database. Eur. J. Hum. Genet. EJHG 2020, 28, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reardon, W.; Donnai, D. Dysmorphology demystified. Arch. Dis. Child. Fetal Neonatal Ed. 2007, 92, F225–F229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.C.; Homsy, J.; Zaidi, S.; Lu, Q.; Morton, S.; DePalma, S.R.; Zeng, X.; Qi, H.; Chang, W.; Sierant, M.C.; et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 2017, 49, 1593–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blue, G.M.; Kirk, E.P.; Giannoulatou, E.; Sholler, G.F.; Dunwoodie, S.L.; Harvey, R.P.; Winlaw, D.S. Advances in the genetics of congenital heart disease: A clinician’s guide. J. Am. Coll. Cardiol. 2017, 69, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Herpers, R.; Rodax, H.; Sommer, G. Neural network identifies faces with morphological syndromes. Artif. Intell. Med. 1993, 10, 481–485. [Google Scholar]
- Loos, H.S.; Wieczorek, D.; Würtz, R.P.; von der Malsburg, C.; Horsthemke, B. Computer-based recognition of dysmorphic faces. Eur. J. Hum. Genet. 2003, 11, 555–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boehringer, S.; Guenther, M.; Sinigerova, S.; Wurtz, R.P.; Horsthemke, B.; Wieczorek, D. Automated syndrome detection in a set of clinical facial photographs. Am. J. Med. Genet. 2011, 155, 2161–2169. [Google Scholar] [CrossRef] [PubMed]
- Balliu, B.; Würtz, R.P.; Horsthemke, B.; Wieczorek, D.; Böhringer, S. Classification and Visualization Based on Derived Image Features: Application to Genetic Syndromes. PLoS ONE 2014, 9, e109033. [Google Scholar] [CrossRef] [PubMed]
- Cristinacce, D.; Cootes, T.F. Feature detection and tracking with constrained local models. BMVC 2006, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Okada, K.; Rosenbaum, K.; Kehoe, L.; Zand, D.J.; Sze, R.; Linguraru, M.G. Digital facial dysmorphology for genetic screening: Hierarchical constrained local model using ICA. Med Image Anal. 2014, 18, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Kruszka, P.; Porras, A.R.; Addissie, Y.A.; Moresco, A.; Medrano, S.; Mok, G.T.; Leung, G.K.C.; Tekendo-Ngongang, C.; Uwineza, A.; Thong, M.-K.; et al. Noonan syndrome in diverse populations. Am. J. Med Genet. Part A 2017, 173, 2323–2334. [Google Scholar] [CrossRef] [PubMed]
- Basel-Vanagaite, L.; Wolf, L.; Orin, M.; Larizza, L.; Gervasini, C.; Krantz, I.; Deardoff, M. Recognition of the Cornelia de Lange syndrome phenotype with facial dysmorphology novel analysis. Clin. Genet. 2016, 89, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Ferry, Q.; Steinberg, J.; Webber, C.; FitzPatrick, D.R.; Ponting, C.P.; Zisserman, A.; Nellåker, C. Diagnostically relevant facial gestalt information from ordinary photos. eLife 2014, 3, e02020. [Google Scholar] [CrossRef] [PubMed]
- Gurovich, Y.; Hanani, Y.; Bar, O.; Nadav, G.; Fleischer, N.; Gelbman, D.; Basel-Salmon, L.; Krawitz, P.M.; Kamphausen, S.B.; Zenker, M.; et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat. Med. 2019, 25, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Song, Y.; Qi, H. Age Progression/Regression by Conditional Adversarial Autoencoder. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4352–4360. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal. Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef] [Green Version]
- Shu, C.; Ding, X.; Fang, C. Histogram of the oriented gradient for face recognition. Tsinghua Sci. Technol. 2011, 16, 216–224. [Google Scholar] [CrossRef]
- King, D.E. Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res. 2009, 10, 1755–1758. [Google Scholar]
- Serengil, S.I.; Ozpinar, A. “LightFace: A Hybrid Deep Face Recognition Framework. In ” In Proceedings of the Innovations in Intelligent Systems and Applications Conference (ASYU), İstanbul, Turkey, 15–17 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Bulat, A.; Tzimiropoulos, G. How far are we from solving the 2d & 3d face alignment problem? In (and a dataset of 230,000 3d facial landmarks). In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1021–1030. [Google Scholar] [CrossRef] [Green Version]
- Lumaka, A.; Cosemans, N.; Lulebo Mampasi, A.; Mubungu, G.; Mvuama, N.; Lubala, T.; Mbuyi-Musanzayi, S.; Breckpot, J.; Holvoet, M.; de Ravel, T.; et al. Facial dysmorphism is influenced by ethnic background of the patient and of the evaluator. Clin. Genet. 2017, 92, 166–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sifrim, A.; Hitz, M.P.; Wilsdon, A.; Breckpot, J.; Turki, S.H.; Thienpont, B.; McRae, J.; Fitzgerald, T.W.; Singh, T.; Swaminathan, G.J.; et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat. Genet. 2016, 48, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
Patient Group | Distance between Points (Labeled in Figure 2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1–2 | 3–4 | 4–5 | 5–6 | 7–8 | 9–10 | 11–12 | 13–14 | 12–15 | 15–16 | 7–16 | |
Control | 32.31 | 27.66 | 17.57 | 17.57 | 26.14 | 17.46 | 8.94 | 39.2 | 14.27 | 23.99 | 75.71 |
22q11 microdeletion syndrome | 32.4 | 27.97 | 17.47 | 17.47 | 26.33 | 16.91 | 9 | 36.12 | 12.2 | 25.34 | 74.71 |
Angelman syndrome | 31.8 | 26.76 | 16.88 | 16.88 | 25.2 | 17.72 | 8.59 | 39.27 | 18 | 23.62 | 76.69 |
Coffin–Lowry syndrome | 33.17 | 30.37 | 17.61 | 17.61 | 26.01 | 17.89 | 9.78 | 38.93 | 24.01 | 22.41 | 83.27 |
Cornelia de Lange syndrome | 32.21 | 28.52 | 17.25 | 17.25 | 23.49 | 16.6 | 10.73 | 36.3 | 11.73 | 22.93 | 71.67 |
Crouzon syndrome | 33.52 | 30.33 | 18.4 | 18.4 | 25.45 | 16.92 | 8.26 | 35.9 | 15.96 | 24.29 | 75.28 |
Down syndrome | 31.93 | 27.64 | 17.11 | 17.11 | 24.04 | 17.19 | 8.78 | 37.84 | 14.74 | 22.35 | 71.78 |
Fragile X syndrome | 32.64 | 27.45 | 17.8 | 17.8 | 27.44 | 17.69 | 9.55 | 39.94 | 19.26 | 23.67 | 82.06 |
KBG syndrome | 32.3 | 28.31 | 17.46 | 17.46 | 25.14 | 16.69 | 10.31 | 36.23 | 13.98 | 24.68 | 76.23 |
Kabuki syndrome | 32.83 | 28.76 | 17.82 | 17.82 | 25.39 | 16.77 | 10.09 | 34.46 | 13.67 | 24.03 | 74.45 |
Mowat–Wilson syndrome | 32.74 | 28.53 | 17.72 | 17.72 | 27.16 | 17.76 | 8.82 | 39.74 | 16.18 | 24.91 | 79.38 |
Noonan syndrome | 32.87 | 28.71 | 17.65 | 17.65 | 25.71 | 16.9 | 10.25 | 35.34 | 14.46 | 24.47 | 76.41 |
Pitt–Hopkins syndrome | 32.34 | 27.67 | 17.35 | 17.35 | 25.93 | 17.76 | 8.34 | 38.77 | 17.47 | 23.44 | 76.67 |
Smith–Lemli–Opitz syndrome | 32.24 | 27.89 | 17.16 | 17.16 | 24.38 | 17.38 | 9.43 | 38.09 | 20.56 | 22.47 | 78.14 |
Wideman–Steinert syndrome | 32.72 | 29.07 | 17.15 | 17.15 | 26.45 | 16.96 | 9.4 | 36.89 | 15.95 | 23.69 | 77.52 |
Williams syndrome | 31.98 | 27.77 | 17.52 | 17.52 | 24.52 | 17.28 | 10.72 | 39.3 | 16.69 | 22.12 | 76.07 |
Patient Group | Face Recognition Model | |||||||
---|---|---|---|---|---|---|---|---|
ArcFace | FaceNet | DeepFace | FaceNet512 | |||||
Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall | |
22q11 Microdeletion syndrome | 0.690 | 0.755 | 0.545 | 0.588 | 0.484 | 0.580 | 0.493 | 0.517 |
Angelman syndrome | 0.657 | 0.680 | 0.396 | 0.576 | 0.467 | 0.669 | 0.419 | 0.525 |
Coffin–Lowry syndrome | 0.811 | 0.634 | 0.742 | 0.663 | 0.417 | 0.343 | 0.537 | 0.761 |
Control | 0.910 | 0.956 | 0.890 | 0.898 | 0.944 | 0.979 | 0.859 | 0.883 |
Cornelia de Lange syndrome | 0.949 | 0.811 | 0.593 | 0.649 | 0.701 | 0.394 | 0.856 | 0.750 |
Crouzon syndrome | 0.907 | 0.838 | 0.783 | 0.915 | 0.748 | 0.459 | 0.871 | 0.866 |
Down syndrome | 0.911 | 0.819 | 0.755 | 0.756 | 0.537 | 0.632 | 0.770 | 0.699 |
Fragile X syndrome | 0.534 | 0.313 | 0.397 | 0.513 | 0.436 | 0.369 | 0.203 | 0.237 |
KBG syndrome | 0.786 | 0.714 | 0.669 | 0.610 | 0.599 | 0.708 | 0.580 | 0.560 |
Kabuki syndrome | 0.787 | 0.631 | 0.564 | 0.474 | 0.495 | 0.391 | 0.789 | 0.576 |
Mowat–Wilson syndrome | 0.902 | 0.839 | 0.777 | 0.665 | 0.501 | 0.326 | 0.777 | 0.793 |
Noonan syndrome | 0.562 | 0.543 | 0.529 | 0.453 | 0.362 | 0.353 | 0.558 | 0.494 |
Pitt–Hopkins syndrome | 0.783 | 0.610 | 0.568 | 0.373 | 0.284 | 0.225 | 0.544 | 0.383 |
Smith–Lemli–Opitz syndrome | 0.683 | 0.711 | 0.562 | 0.572 | 0.599 | 0.517 | 0.650 | 0.619 |
Wideman–Steinert syndrome | 0.750 | 0.813 | 0.774 | 0.661 | 0.601 | 0.483 | 0.788 | 0.586 |
Williams syndrome | 0.889 | 0.728 | 0.694 | 0.542 | 0.533 | 0.218 | 0.692 | 0.591 |
Accuracy | 0.846 | 0.762 | 0.757 | 0.746 |
Patient Group | Face Recognition Model | |||||||
---|---|---|---|---|---|---|---|---|
DeepFace | ArcFace | DeepID | FaceNet | |||||
Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall | |
Control | 0.961 | 0.971 | 0.922 | 0.922 | 0.940 | 0.921 | 0.894 | 0.915 |
Disease | 0.962 | 0.949 | 0.907 | 0.908 | 0.900 | 0.922 | 0.894 | 0.867 |
Accuracy | 0.961 | 0.915 | 0.922 | 0.894 | ||||
False positives | 0.04 | 0.05 | 0.08 | 0.07 | ||||
False negatives | 0.04 | 0.09 | 0.09 | 0.1 | ||||
Negative redictive value | 0.957 | 0.915 | 0.914 | 0.906 |
Disease Removed from Training | DeepFace Using 70% of the Dataset without Given Disease for Training | DeepFace Using 100% of the Dataset without Given Disease for Training |
---|---|---|
22q11 microdeletion syndrome | 0.70 | 0.88 |
Angelman syndrome | 0.85 | 0.94 |
KBG syndrome | 0.84 | 0.98 |
Down syndrome | 0.92 | 0.97 |
Crouzon syndrome | 0.91 | 0.88 |
Cornelia de Lange syndrome | 0.85 | 0.91 |
Noonan syndrome | 0.83 | 0.99 |
Williams syndrome | 0.91 | 1.00 |
Fragile X syndrome | 0.65 | 1.00 |
Kabuki syndrome | 0.90 | 0.94 |
Mowat-Wilson syndrome | 0.92 | 0.94 |
Coffin–Lowry syndrome | 0.96 | 1.00 |
Smith–Lemli–Opitz syndrome | 0.79 | 0.95 |
Pitt–Hopkins syndrome | 0.79 | 0.91 |
Wideman–Steinert syndrome | 0.84 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geremek, M.; Szklanny, K. Deep Learning-Based Analysis of Face Images as a Screening Tool for Genetic Syndromes. Sensors 2021, 21, 6595. https://doi.org/10.3390/s21196595
Geremek M, Szklanny K. Deep Learning-Based Analysis of Face Images as a Screening Tool for Genetic Syndromes. Sensors. 2021; 21(19):6595. https://doi.org/10.3390/s21196595
Chicago/Turabian StyleGeremek, Maciej, and Krzysztof Szklanny. 2021. "Deep Learning-Based Analysis of Face Images as a Screening Tool for Genetic Syndromes" Sensors 21, no. 19: 6595. https://doi.org/10.3390/s21196595
APA StyleGeremek, M., & Szklanny, K. (2021). Deep Learning-Based Analysis of Face Images as a Screening Tool for Genetic Syndromes. Sensors, 21(19), 6595. https://doi.org/10.3390/s21196595