SAR Image Change Detection via Multiple-Window Processing with Structural Similarity
Abstract
:1. Introduction
2. Analysis of MWP Associated with SSIM
3. Optimization Task Based on Gamma Correction
4. Analysis of Computational Complexity
5. Experimental Results
5.1. Description of the Data Sets
5.2. Detection Quality Metrics
5.3. Analysis of CDMs Generated by the Proposed Method
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar Systems and Signal Processing; Wiley: New York, NY, USA, 2012. [Google Scholar]
- Kang, M.-S.; Kim, K.-T. Ground moving target imaging based on compressive sensing framework with single-channel SAR. IEEE Sens. J. 2020, 20, 1238–1250. [Google Scholar] [CrossRef]
- Cumming, I.G.; Wong, H.C. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Kang, M.S.; Lee, S.J.; Lee, S.H.; Kim, K.T. ISAR imaging of high-speed maneuvering target using gapped stepped-frequency waveform and compressive sensing. IEEE Trans. Image Process. 2017, 26, 5043–5056. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-S.; Kim, K.-T. Compressive sensing based SAR imaging and autofocus using improved Tikhonov regularization. IEEE Sens. J. 2019, 19, 5529–5540. [Google Scholar] [CrossRef]
- Schwartz, C.; Ramos, L.P.; Duarte, L.T.; Pinho, M.D.S.; Pettersson, M.I.; Vu, V.T.; Machado, R. Change Detection in UWB SAR images based on robust principal component analysis. Remote Sens. 2020, 12, 1916. [Google Scholar] [CrossRef]
- Kang, M.-S.; Bae, J.-H.; Kang, B.-S.; Kim, K.-T. ISAR Cross-range scaling using iterative processing via principal component analysis and bisection algorithm. IEEE Trans. Signal Process. 2016, 64, 3909–3918. [Google Scholar] [CrossRef]
- Lu, P.; Stumpf, A.; Kerle, N.; Casagli, N. Object-oriented change detection for landslide rapid mapping. IEEE Geosci. Remote Sens. Lett. 2011, 8, 701–705. [Google Scholar] [CrossRef]
- Wang, R.; Chen, J.-W.; Wang, Y.; Jiao, L.; Wang, M. SAR Image change detection via spatial metric learning with an improved mahalanobis distance. IEEE Geosci. Remote Sens. Lett. 2019, 17, 77–81. [Google Scholar] [CrossRef]
- Kang, M.-S.; Won, Y.-J.; Lim, B.-G.; Kim, K.-T. Efficient synthesis of antenna pattern using improved PSO for spaceborne SAR performance and imaging in presence of element failure. IEEE Sens. J. 2018, 18, 6576–6587. [Google Scholar] [CrossRef]
- Rignot, E.; Van Zyl, J. Change detection techniques for ERS-1 SAR data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 896–906. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Wang, J. Mapping winter wheat planting area and monitoring its phenology using sentinel-1 backscatter time series. Remote Sens. 2019, 11, 449. [Google Scholar] [CrossRef] [Green Version]
- Sunmaiya, M.N.; Shantha, R. Logarithm mean-based thresholding for sar image change detection. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1726–1728. [Google Scholar] [CrossRef]
- Gong, M.; Cao, Y.; Wu, Q. A Neighborhood-based ratio approach for change detection in SAR images. IEEE Geosci. Remote Sens. Lett. 2012, 9, 307–311. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Wang, C.; Li, J.; Zhang, H. SAR image change detection using saliency extraction and shearlet transform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4701–4710. [Google Scholar] [CrossRef]
- Vu, V.T.; Gomes, N.R.; Pettersson, M.I.; Dammert, P.; Hellsten, H. Bivariate Gamma Distribution for Wavelength Resolution SAR Change Detection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 473–481. [Google Scholar] [CrossRef]
- Kang, M.-S.; Kim, K.-T. Automatic SAR image registration via Tsallis entropy and iterative search process. IEEE Sens. J. 2020, 20, 7711–7720. [Google Scholar] [CrossRef]
- Kang, M.-S.; Bae, J.-H.; Lee, S.-H.; Kim, K.-T. Efficient ISAR autofocus via minimization of Tsallis Entropy. IEEE Trans. Aerosp. Electron. Syst. 2017, 52, 2950–2960. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Brunet, D.; Vrscay, E.R.; Wang, Z. On the mathematical properties of the structural similarity index. IEEE Trans. Image Process. 2012, 21, 1488–1499. [Google Scholar] [CrossRef]
- Maini, R.; Aggarwal, H. A Comprehensive review of image enhancement techniques. J. Comput. 2010, 2, 8–13. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Pearson Education: New Delhi, India, 2005. [Google Scholar]
- Vimal, S.P.; Kandhai, T. Automated image enhancement using power law transformations. Sadhana 2013, 37, 739–745. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Cole-Rhodes, A.A.; Johnson, K.L.; Le Moigne, J.; Zavorin, I. Multiresolution registration of remote sensing imagery by optimization of mutual in-formation using a stochastic gradient. IEEE Trans. Image Process. 2003, 12, 1495–1511. [Google Scholar] [CrossRef]
- Bruzzone, L.; Prieto, D. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1171–1182. [Google Scholar] [CrossRef] [Green Version]
- Gamba, P.; Dell’Acqua, F.; Lisini, G. Change detection of multitemporal SAR data in urban areas combining feature-based and pixel-based tech-niques. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2820–2827. [Google Scholar] [CrossRef]
- Argenti, F.; Alparone, L. Speckle removal from SAR images in the undecimated wavelet domain. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2363–2374. [Google Scholar] [CrossRef]
- Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.; Bates, P.D.; Mason, D.C. A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2417–2430. [Google Scholar] [CrossRef] [Green Version]
- Wei, P. Deep SAR imaging and motion compensation. IEEE Trans. Image. Process. 2021, 30, 2232–2247. [Google Scholar]
Method | FP | FN | FA (%) | DR (%) | PCD (%) | |
---|---|---|---|---|---|---|
CC | 601 | 5918 | 4.820 | 67.71 | 0.164 | 92.21 |
LMT | 515 | 5687 | 3.463 | 68.22 | 0.187 | 93.16 |
NRA | 583 | 4210 | 2.966 | 68.86 | 0.385 | 94.45 |
SEST | 479 | 3786 | 2.544 | 69.45 | 0.534 | 95.10 |
BGD | 433 | 3115 | 2.231 | 68.02 | 0.601 | 94.85 |
Proposed | 378 | 1643 | 1.228 | 65.63 | 0.794 | 95.32 |
Method | FP | FN | FA (%) | DR (%) | PCD (%) | |
---|---|---|---|---|---|---|
CC | 3263 | 4015 | 18.38 | 69.55 | 0.677 | 89.23 |
LMT | 2977 | 3737 | 14.64 | 71.58 | 0.698 | 90.10 |
NRA | 2645 | 3475 | 11.27 | 76.79 | 0.734 | 91.44 |
SEST | 2712 | 3615 | 12.23 | 78.36 | 0.749 | 91.78 |
BGD | 2885 | 3688 | 12.72 | 78.89 | 0.776 | 92.21 |
Proposed | 2103 | 2985 | 9.668 | 84.24 | 0.796 | 93.43 |
Method | FP | FN | FA (%) | DR (%) | PCD (%) | |
---|---|---|---|---|---|---|
CC | 3622 | 93462 | 32.69 | 8.664 | 0.155 | 69.74 |
LMT | 3109 | 80942 | 24.60 | 12.57 | 0.197 | 75.97 |
NRA | 2279 | 73947 | 17.52 | 16.66 | 0.288 | 84.83 |
SEST | 2061 | 69246 | 16.41 | 18.80 | 0.301 | 85.45 |
BGD | 1894 | 67175 | 15.43 | 23.78 | 0.325 | 86.31 |
Proposed | 1644 | 63620 | 14.30 | 27.44 | 0.354 | 87.68 |
Method | FP | FN | FA (%) | DR (%) | PCD (%) | |
---|---|---|---|---|---|---|
CC | 564 | 5491 | 3.371 | 70.36 | 0.204 | 95.46 |
LMT | 480 | 5074 | 2.244 | 71.15 | 0.228 | 97.77 |
NRA | 542 | 3987 | 1.830 | 72.94 | 0.448 | 98.12 |
SEST | 503 | 3451 | 1.114 | 73.54 | 0.635 | 98.34 |
BGD | 424 | 2542 | 0.938 | 72.27 | 0.723 | 98.86 |
Proposed | 319 | 1359 | 0.678 | 68.70 | 0.848 | 99.32 |
Method | FP | FN | FA (%) | DR (%) | PCD (%) | |
---|---|---|---|---|---|---|
CC | 2771 | 3523 | 6.389 | 74.86 | 0.735 | 92.30 |
LMT | 2581 | 3102 | 5.670 | 76.95 | 0.748 | 94.43 |
NRA | 2294 | 2835 | 5.119 | 80.10 | 0.776 | 94.94 |
SEST | 2018 | 2621 | 4.804 | 82.44 | 0.782 | 95.12 |
BGD | 1994 | 2357 | 4.676 | 84.02 | 0.806 | 95.46 |
Proposed | 1920 | 2151 | 4.062 | 87.67 | 0.828 | 96.01 |
Method | FP | FN | FA (%) | DR (%) | PCD (%) | |
---|---|---|---|---|---|---|
CC | 2844 | 81102 | 23.20 | 12.78 | 0.205 | 76.41 |
LMT | 2521 | 74302 | 18.05 | 15.55 | 0.243 | 80.96 |
NRA | 1897 | 64482 | 11.43 | 19.34 | 0.318 | 88.57 |
SEST | 1675 | 63680 | 11.21 | 25.05 | 0.356 | 88.89 |
BGD | 1563 | 60268 | 10.97 | 31.31 | 0.392 | 89.64 |
Proposed | 1367 | 58482 | 10.32 | 39.53 | 0.429 | 90.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, M.; Baek, J. SAR Image Change Detection via Multiple-Window Processing with Structural Similarity. Sensors 2021, 21, 6645. https://doi.org/10.3390/s21196645
Kang M, Baek J. SAR Image Change Detection via Multiple-Window Processing with Structural Similarity. Sensors. 2021; 21(19):6645. https://doi.org/10.3390/s21196645
Chicago/Turabian StyleKang, Minseok, and Jaemin Baek. 2021. "SAR Image Change Detection via Multiple-Window Processing with Structural Similarity" Sensors 21, no. 19: 6645. https://doi.org/10.3390/s21196645
APA StyleKang, M., & Baek, J. (2021). SAR Image Change Detection via Multiple-Window Processing with Structural Similarity. Sensors, 21(19), 6645. https://doi.org/10.3390/s21196645