Corona Discharge Characteristics under Variable Frequency and Pressure Environments
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results
3.1. Visual Corona Photographs Taken with the Back-Illuminated CMOS Sensor
3.2. Obtained Corona Extinction Voltages (CEV)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rui, R.; Cotton, I. Impact of low pressure aerospace environment on machine winding insulation. In Proceedings of the 2010 IEEE International Symposium on Electrical Insulation, San Diego, CA, USA, 6–9 June 2010; pp. 1–5. [Google Scholar] [CrossRef]
- Riba, J.-R.; Gómez-Pau, Á.; Moreno-Eguilaz, M. Experimental Study of Visual Corona under Aeronautic Pressure Conditions Using Low-Cost Imaging Sensors. Sensors 2020, 20, 411. [Google Scholar] [CrossRef] [Green Version]
- Belijar, G.; Chanaud, G.; Hermette, L.; Risacher, A. Study of Electric Arc Ignition, Behavior and Extinction in Aeronautical Environment, in Presence of FOD; Saint-Exupéry: Toulouse, France, 2017; pp. 1–8. [Google Scholar]
- Andrea, J.; Buffo, M.; Guillard, E.; Landfried, R.; Boukadoum, R.; Teste, P. Arcing fault in aircraft distribution network. In Proceedings of the Annual Holm Conference on Electrical Contacts, Denver, CO, USA, 10–13 September 2017; pp. 317–324. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, X.; Cao, X. Harmonic Control for Variable-Frequency Aviation Power System Based on Three-Level NPC Converter. IEEE Access 2020, 8, 132775–132785. [Google Scholar] [CrossRef]
- Karady, G.G.; Sirkis, M.D.; Liu, L. Investigation of corona initiation voltage at reduced pressures. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 144–150. [Google Scholar] [CrossRef]
- Riba, J.-R.; Gomez-Pau, A.; Moreno-Eguilaz, M. Sensor Comparison for Corona Discharge Detection Under Low Pressure Conditions. IEEE Sens. J. 2020, 20, 11698–11706. [Google Scholar] [CrossRef]
- Capineri, L.; Dainelli, G.; Materassi, M.; Dunn, B.D. Partial discharge testing of solder fillets on PCBs in a partial vacuum: New experimental results. IEEE Trans. Electron. Packag. Manuf. 2003, 26, 294–304. [Google Scholar] [CrossRef]
- Clean Sky. 9th Call for Proposals (CFP09)—List and Full Description of Topics; Clean Sky: Brussels, Belgium, 2018; pp. 1–354. [Google Scholar]
- Esfahani, A.N.; Shahabi, S.; Stone, G.; Kordi, B. Investigation of Corona Partial Discharge Characteristics Under Variable Frequency and Air Pressure. In Proceedings of the 2018 IEEE Electrical Insulation Conference (EIC), San Antonio, TX, USA, 17–20 June 2018; pp. 31–34. [Google Scholar] [CrossRef]
- Kang, T.; Ryu, J. Determination of Aircraft Cruise Altitude with Minimum Fuel Consumption and Time-to-Climb: An Approach with Terminal Residual Analysis. Mathematics 2021, 9, 147. [Google Scholar] [CrossRef]
- Wheeler, P.; Bozhko, S. The more electric aircraft: Technology and challenges. IEEE Electrif. Mag. 2014, 2, 6–12. [Google Scholar] [CrossRef]
- Borghei, M.; Ghassemi, M. Insulation Materials and Systems for More and All-Electric Aircraft: A Review Identifying Challenges and Future Research Needs. IEEE Trans. Transp. Electrif. 2021, 7, 1930–1953. [Google Scholar] [CrossRef]
- Mermigkas, A.C.; Clark, D.; Haddad, A.M. Investigation of High Altitude/Tropospheric Correction Factors for Electric Aircraft Applications. In Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2020; Volume 598, pp. 308–315. [Google Scholar] [CrossRef]
- el Bayda, H.; Valensi, F.; Masquere, M.; Gleizes, A. Energy losses from an arc tracking in aeronautic cables in DC circuits. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 19–27. [Google Scholar] [CrossRef]
- Woodworth, A.A.; Shin, E.E.; Lizcano, M. High Voltage Insulation for Electrified Aircraft; NASA: Washington, DC, USA, 2018; p. 11.
- Shahsavarian, T.; Li, C.; Baferani, M.A.; Cao, Y. Surface discharge studies of insulation materials in aviation power system under DC voltage. In Proceedings of the 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), East Rutherford, NJ, USA, 18–30 October 2020; pp. 271–274. [Google Scholar] [CrossRef]
- Borghei, M.; Ghassemi, M. Characterization of Partial Discharge Activities in WBG Power Converters under Low-Pressure Condition. Energies 2021, 14, 5394. [Google Scholar] [CrossRef]
- Dricot, F.; Reher, H.J. Survey of Arc Tracking on Aerospace Cables and Wires. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 896–903. [Google Scholar] [CrossRef]
- Fabiani, D.; Montanari, G.C.; Cavallini, A.; Saccani, A.; Toselli, M. Nanostructured-coated XLPE showing improved electrical properties: Partial discharge resistance and space charge accumulation. In Proceedings of the 2011 International Symposium on Electrical Insulating Materials, Kyoto, Japan, 6–10 September 2011; pp. 16–19. [Google Scholar] [CrossRef]
- Du, B.; Liu, H. Effects of atmospheric pressure on tracking failure of gamma-ray irradiated polymer insulating materials. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 541–547. [Google Scholar] [CrossRef]
- IEEE. The Authoritative Dictionary of IEEE Standards Terms, 7th ed.; IEEE Std 100-2000; IEEE Press: Piscataway Township, NJ, USA, 2000; pp. 1–1362. [Google Scholar] [CrossRef]
- Cella, B. On-line Partial Discharges Detection in Conversion Systems Used in Aeronautics; Université de Toulouse: Toulouse, France, 2015. [Google Scholar]
- Du, B.X.; Liu, Y.; Liu, H.J. Effects of low pressure on tracking failure of printed circuit boards. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 1379–1384. [Google Scholar] [CrossRef]
- Douar, M.A.; Beroual, A.; Souche, X. Assessment of the resistance to tracking of polymers in clean and salt fogs due to flashover arcs and partial discharges degrading conditions on one insulator model. IET Gener. Transm. Distrib. 2016, 10, 986–994. [Google Scholar] [CrossRef]
- Meng, D.; Zhang, B.Y.; Chen, J.; Lee, S.C.; Lim, J.Y. Tracking and erosion properties evaluation of polymeric insulating materials. In Proceedings of the ICHVE 2016—2016 IEEE International Conference on High Voltage Engineering and Application, Chengdu, China, 19–22 September 2016. [Google Scholar] [CrossRef]
- Degardin, V.; Kone, L.; Valensi, F.; Laly, P.; Lienard, M.; Degauque, P. Characterization of the High-Frequency Conducted Electromagnetic Noise Generated by an Arc Tracking between DC wires. IEEE Trans. Electromagn. Compat. 2016, 58, 1228–1235. [Google Scholar] [CrossRef]
- Babrauskas, V. Research on Electrical Fires: The State of the Art. Fire Saf. Sci. 2008, 9, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Kang, X.L.; Zhao, Q. An algorithm for gas breakdown voltage prediction in low pressure gap. In Proceedings of the 3rd International Conference on Computer Science and Application Engineering, Sanya, China, 22–24 October 2019. [Google Scholar] [CrossRef]
- Owaid, A.; Owaid, A.Y. The Effect of Axial Magnetic Field on The Breakdown Voltage of Air at Low Pressure. Iraqi J. Sci. 2020, 61, 3228–3234. [Google Scholar] [CrossRef]
- Riba, J.-R.; Abomailek, C.; Casals-Torrens, P.; Capelli, F. Simplification and cost reduction of visual corona tests. IET Gener. Transm. Distrib. 2018, 12, 834–841. [Google Scholar] [CrossRef] [Green Version]
- Kozioł, M.; Nagi, Ł.; Kunicki, M.; Urbaniec, I. Radiation in the Optical and UHF Range Emitted by Partial Discharges. Energies 2019, 12, 4334. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; MacAlpine, J.M.K.; Bian, X.; Wang, L.; Guan, Z. Comparison of methods for determining corona inception voltages of transmission line conductors. J. Electrostat. 2013, 71, 269–275. [Google Scholar] [CrossRef]
- Souza, A.L.; Lopes, I.J.S. Experimental investigation of corona onset in contaminated polymer surfaces. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1321–1331. [Google Scholar] [CrossRef]
- Chai, H.; Phung, B.T.; Mitchell, S. Application of UHF Sensors in Power System Equipment for Partial Discharge Detection: A Review. Sensors 2019, 19, 1029. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Zhu, J.; Zhu, J.; Bian, X.; Shen, B. Experiments and analysis of corona inception voltage under combined AC-DC voltages at various air pressure and humidity in rod to plane electrodes. CSEE J. Power Energy Syst. 2021, 7, 875–888. [Google Scholar] [CrossRef]
- Turner, J.; Igoe, D.; Parisi, A.V.; McGonigle, A.J.; Amar, A.; Wainwright, L. A review on the ability of smartphones to detect ultraviolet (UV) radiation and their potential to be used in UV research and for public education purposes. Sci. Total Environ. 2020, 706, 135873. [Google Scholar] [CrossRef]
- Wilkes, T.; McGonigle, A.J.; Pering, T.D.; Taggart, A.J.; White, B.S.; Bryant, R.G.; Willmott, J.R. Ultraviolet Imaging with Low Cost Smartphone Sensors: Development and Application of a Raspberry Pi-Based UV Camera. Sensors 2016, 16, 1649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naidu, M.S.; Kamaraju, V. High-Voltage Engineering, 6th ed.; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Linder, W.; Steele, H. Estimating voltage breakdown performance of high-altitude antennas. In Proceedings of the WESCON/59 Conference Record, San Francisco, CA, USA, 18–21 August 1959; Volume 3, pp. 9–16. [Google Scholar] [CrossRef]
- Riba, J.-R.; Gómez-Pau, Á.; Moreno-Eguilaz, M. Insulation Failure Quantification Based on the Energy of Digital Images Using Low-Cost Imaging Sensors. Sensors 2020, 24, 7219. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T.G.; Karady, G.G.; Sirkis, M.D. An Analysis of the Frequency Characteristics of Corona Discharge at Low Pressure; Phillips Laboratory, Kirtland Air ForceBase: Albuquerque, NM, USA, 1991. [Google Scholar]
- Briels, T.M.P.; van Veldhuizen, E.M.; Ebert, U. Positive streamers in air and nitrogen of varying density: Experiments on similarity laws. J. Phys. D Appl. Phys. 2008, 41, 234008. [Google Scholar] [CrossRef] [Green Version]
Pressures | Frequencies |
---|---|
100 kPa | 50, 200, 400, 600, 800, 1000 Hz |
80 kPa | 50, 200, 400, 600, 800, 1000 Hz |
60 kPa | 50, 200, 400, 600, 800, 1000 Hz |
40 kPa | 50, 200, 400, 600, 800, 1000 Hz |
20 kPa | 50, 200, 400, 600, 800, 1000 Hz |
Pressure | Test | Sensor | 50 Hz | 200 Hz | 400 Hz | 600 Hz | 800 Hz | 1000 Hz |
---|---|---|---|---|---|---|---|---|
100 kPa | Test 1 | Camera | 3761.5 | 3817.1 | 3784.0 | 3792.0 | 3659.9 | 3579.1 |
Leakage current | 3723.2 | 3788.1 | 3754.5 | 3792.0 | 3659.9 | 3579.1 | ||
Test 2 | Camera | 3802.3 | 3781.0 | 3826.3 | 3899.8 | 3798.5 | 3732.3 | |
Leakage current | 3774.4 | 3781.0 | 3826.3 | 3835.9 | 3798.5 | 3732.3 | ||
Test 3 | Camera | 3800.7 | 3819.6 | 3807.1 | 3795.8 | 3843.2 | 3779.7 | |
Leakage current | 3763.9 | 3800.5 | 3786.8 | 3774.7 | 3843.2 | 3779.7 | ||
Average | 3788.2 | 3805.9 | 3805.8 | 3829.2 | 3767.2 | 3697.0 | ||
80 kPa | Test 1 | Camera | 3382.9 | 3414.8 | 3410.6 | 3441.2 | 3341.8 | 3146.4 |
Leakage current | 3326.5 | 3377.3 | 3410.6 | 3430.5 | 3341.8 | 3146.4 | ||
Test 2 | Camera | 3367.0 | 3398.1 | 3412.6 | 3424.6 | 3358.8 | 3272.4 | |
Leakage current | 3348.2 | 3379.1 | 3373.0 | 3404.0 | 3358.8 | 3272.4 | ||
Test 3 | Camera | 3385.4 | 3377.7 | 3412.9 | 3415.1 | 3358.1 | 3271.9 | |
Leakage current | 3329.1 | 3359.3 | 3393.4 | 3404.2 | 3358.1 | 3271.9 | ||
Average | 3378.4 | 3396.9 | 3412.1 | 3427.0 | 3352.9 | 3230.2 | ||
60 kPa | Test 1 | Camera | 2757.9 | 2774.2 | 2761.2 | 2763.5 | 2791.7 | 2689.5 |
Leakage current | 2719.8 | 2736.0 | 2742.6 | 2742.2 | 2781.3 | 2688.1 | ||
Test 2 | Camera | 2798.5 | 2842.9 | 2861.9 | 2868.7 | 2873.7 | 2813.1 | |
Leakage current | 2778.4 | 2823.8 | 2842.3 | 2837.2 | 2851.0 | 2813.1 | ||
Test 3 | Camera | 2853.7 | 2918.9 | 2901.8 | 2909.8 | 2916.8 | 2837.4 | |
Leakage current | 2815.5 | 2851.7 | 2862.4 | 2889.6 | 2916.8 | 2837.4 | ||
Average | 2803.4 | 2845.3 | 2841.7 | 2847.3 | 2860.7 | 2780.0 | ||
40 kPa | Test 1 | Camera | 2255.6 | 2267.0 | 2270.0 | 2270.7 | 2274.6 | 2254.3 |
Leakage current | 2198.5 | 2248.1 | 2270.0 | 2249.5 | 2274.6 | 2254.3 | ||
Test 2 | Camera | 2266.1 | 2315.4 | 2330.7 | 2333.9 | 2366.7 | 2354.2 | |
Leakage current | 2227.7 | 2296.3 | 2330.7 | 2333.9 | 2366.7 | 2354.2 | ||
Test 3 | Camera | 2246.4 | 2316.4 | 2321.5 | 2313.3 | 2322.5 | 2308.0 | |
Leakage current | 2246.4 | 2297.3 | 2321.5 | 2313.3 | 2322.5 | 2308.0 | ||
Average | 2256.0 | 2299.6 | 2307.4 | 2306.0 | 2321.2 | 2305.5 | ||
20 kPa | Test 1 | Camera | 1468.8 | 1520.2 | 1522.6 | 1529.0 | 1526.7 | 1529.8 |
Leakage current | 1449.3 | 1520.2 | 1522.6 | 1529.0 | 1526.7 | 1529.8 | ||
Test 2 | Camera | 1374.7 | 1443.1 | 1444.3 | 1426.4 | 1439.3 | 1458.0 | |
Leakage current | 1355.2 | 1443.1 | 1444.3 | 1426.4 | 1439.3 | 1458.0 | ||
Test 3 | Camera | 1450.2 | 1474.0 | 1463.6 | 1488.5 | 1552.0 | 1629.1 | |
Leakage current | 1450.2 | 1474.0 | 1463.6 | 1488.5 | 1552.0 | 1629.1 | ||
Average | 1431.2 | 1479.1 | 1476.8 | 1481.3 | 1506.0 | 1539.0 |
Frequency | CEV0 | m | R2 | |||
---|---|---|---|---|---|---|
Imaging Sensor | Leakage Current | Imaging Sensor | Leakage Current | Imaging Sensor | Leakage Current | |
50 Hz | 980.5 | 965.9 | 29.182 | 28.908 | 0.9853 | 0.9867 |
200 Hz | 1040.1 | 1031.2 | 28.755 | 28.565 | 0.9845 | 0.9871 |
400 Hz | 1040.0 | 1043.4 | 28.813 | 28.548 | 0.9835 | 0.9839 |
600 Hz | 1033.1 | 1037.5 | 29.084 | 28.765 | 0.9849 | 0.9847 |
800 Hz | 1095.4 | 1093.2 | 27.771 | 27.771 | 0.9820 | 0.9827 |
1000 Hz | 1138.1 | 1138.0 | 26.204 | 26.204 | 0.9863 | 0.9864 |
Frequency | Difference |
---|---|
50 Hz | 1.153% |
200 Hz | 0.695% |
400 Hz | 0.388% |
600 Hz | 0.466% |
800 Hz | 0.078% |
1000 Hz | 0.003% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bas-Calopa, P.; Riba, J.-R.; Moreno-Eguilaz, M. Corona Discharge Characteristics under Variable Frequency and Pressure Environments. Sensors 2021, 21, 6676. https://doi.org/10.3390/s21196676
Bas-Calopa P, Riba J-R, Moreno-Eguilaz M. Corona Discharge Characteristics under Variable Frequency and Pressure Environments. Sensors. 2021; 21(19):6676. https://doi.org/10.3390/s21196676
Chicago/Turabian StyleBas-Calopa, Pau, Jordi-Roger Riba, and Manuel Moreno-Eguilaz. 2021. "Corona Discharge Characteristics under Variable Frequency and Pressure Environments" Sensors 21, no. 19: 6676. https://doi.org/10.3390/s21196676
APA StyleBas-Calopa, P., Riba, J. -R., & Moreno-Eguilaz, M. (2021). Corona Discharge Characteristics under Variable Frequency and Pressure Environments. Sensors, 21(19), 6676. https://doi.org/10.3390/s21196676