Real-Time Leak Detection for a Gas Pipeline Using a k-NN Classifier and Hybrid AE Features
Abstract
:1. Introduction
2. AE Signal Data Acquisition
3. Leak Detection Methodology
3.1. Hybrid Feature Pool and Feature Selection
3.2. Leak Detection Using a k-NN Classifier and Accumulative Leaking Event Occurrence Rate
4. Implementation of Proposed Gas Pipeline Leak Detection on an MCU-Based Architecture
4.1. Offline Analysis of AE Signal Datasets
4.2. Gas Pipeline Leak Detection Implementation on an MCU-Based Hardware Architecture
4.2.1. Overview of the Experimental Hardware Design with an MCU Used for Real-Time Gas Pipeline Leak Detection
4.2.2. Real-Time Gas Leak Detection Implementation on the 32F746G-DISCOVERY Board
5. Experimental Results
5.1. Detection Accuracy and Real-Time Characteristic
5.2. Detection Robustness
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McAllister, E.W. (Ed.) Pipeline Rules of Thumb Handbook: Quick and Accurate Solutions to Your Everyday Pipeline Problems, 7th ed.; Elsevier: Amsterdam, The Netherlands; Gulf Professional: Boston, MA, USA, 2009; ISBN 978-1-85617-500-5. [Google Scholar]
- Antaki, G.A. Piping and Pipeline Engineering: Design, Construction, Maintenance, Integrity, and Repair; CRC Press: Boca Raton, FL, USA, 2003; ISBN 978-0-203-91115-0. [Google Scholar]
- EGIG. Gas Pipeline Incidents; European Gas Pipeline Incident Data Group: Groningen, The Netherlands, 2018. [Google Scholar]
- Murvay, P.-S.; Silea, I. A survey on gas leak detection and localization techniques. J. Loss Prev. Process Ind. 2012, 25, 966–973. [Google Scholar] [CrossRef]
- Miller, R.K.; Hill, E.K.; Moore, P.O.; American Society for Nondestructive Testing (Eds.) Acoustic Emission Testing, 3rd ed.; Nondestructive Testing Handbook; American Society for Nondestructive Testing: Columbus, OH, USA, 2005; ISBN 978-1-57117-106-1. [Google Scholar]
- Li, Z.; Zhang, H.; Tan, D.; Chen, X.; Lei, H. A novel acoustic emission detection module for leakage recognition in a gas pipeline valve. Process Saf. Environ. Prot. 2017, 105, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Zhang, L.; Liang, W. Acoustic detection technology for gas pipeline leakage. Process Saf. Environ. Prot. 2013, 91, 253–261. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, L.; Liang, W.; Ding, Q. Integrated leakage detection and localization model for gas pipelines based on the acoustic wave method. J. Loss Prev. Process Ind. 2014, 27, 74–88. [Google Scholar] [CrossRef]
- Song, Y.; Li, S. Leak detection for galvanized steel pipes due to loosening of screw thread connections based on acoustic emission and neural networks. J. Vib. Control 2018, 24, 4122–4129. [Google Scholar] [CrossRef]
- Xiao, R.; Hu, Q.; Li, J. Leak detection of gas pipelines using acoustic signals based on wavelet transform and support vector machine. Measurement 2019, 146, 479–489. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, Q.; Wen, J.; Zhang, Y. Natural gas pipeline leak aperture identification and location based on local mean decomposition analysis. Measurement 2016, 79, 147–157. [Google Scholar] [CrossRef]
- Sun, J.; Xiao, Q.; Wen, J.; Wang, F. Natural gas pipeline small leakage feature extraction and recognition based on LMD envelope spectrum entropy and SVM. Measurement 2014, 55, 434–443. [Google Scholar] [CrossRef]
- Zhu, S.-B.; Li, Z.-L.; Zhang, S.-M.; Liang, L.-L.; Zhang, H.-F. Natural gas pipeline valve leakage rate estimation via factor and cluster analysis of acoustic emissions. Measurement 2018, 125, 48–55. [Google Scholar] [CrossRef]
- Datta, S.; Sarkar, S. A review on different pipeline fault detection methods. J. Loss Prev. Process Ind. 2016, 41, 97–106. [Google Scholar] [CrossRef]
- BS EN 15856. Non-Destructive Testing—Acoustic Emission—General Principles of AE Testing for the 416 Detection of Corrosion with Metallic Surrounding Filled with Fluid; European Standard: Brussels, Belgium, 2010. [Google Scholar]
- Baroudi, U.; Al-Roubaiey, A.A.; Devendiran, A. Pipeline leak detection systems and data fusion: A survey. IEEE Access 2019, 7, 97426–97439. [Google Scholar] [CrossRef]
- Gholizadeh, S.; Leman, Z.; Baharudin, B.T.H.T. A review of the application of acoustic emission technique in engineering. Struct. Eng. Mech. 2015, 54, 1075–1095. [Google Scholar] [CrossRef]
- Wang, L.; Gao, X.; Liu, T. Gas pipeline small leakage feature extraction based on LMD envelope spectrum entropy and PCA–RWSVM. Trans. Inst. Meas. Control 2016, 38, 1460–1470. [Google Scholar] [CrossRef]
- Xiao, Q.; Li, J.; Sun, J.; Feng, H.; Jin, S. Natural-gas pipeline leak location using variational mode decomposition analysis and cross-time–Frequency spectrum. Measurement 2018, 124, 163–172. [Google Scholar] [CrossRef]
- He, P. Simulation of ultrasound pulse propagation in lossy media obeying a frequency power law. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 1998, 45, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Rienstra, S.W.; Hirschberg, A. An Introduction to Acoustics. Eindh. Univ. Technol. 2004, 18, 19. [Google Scholar]
- Yan, Y.; Shen, Y.; Cui, X.; Hu, Y. Localization of multiple leak sources using acoustic emission sensors based on MUSIC algorithm and wavelet packet analysis. IEEE Sens. J. 2018, 18, 9812–9820. [Google Scholar] [CrossRef]
- Dong, L.; Qiao, Z.; Wang, H.; Yang, W.; Zhao, W.; Xu, K.; Wang, G.; Zhao, L.; Yan, H. The gas leak detection based on a wireless monitoring system. IEEE Trans. Ind. Inf. 2019, 15, 6240–6251. [Google Scholar] [CrossRef]
- Chraim, F.; Bugra Erol, Y.; Pister, K. Wireless gas leak detection and localization. IEEE Trans. Ind. Inf. 2016, 12, 768–779. [Google Scholar] [CrossRef]
- Pukelsheim, F. The Three Sigma Rule. Am. Stat. 1994, 48, 88–91. [Google Scholar] [CrossRef]
- Koutroumbas, S.T.K. Pattern Recognition, 4th ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Mistras Group. R15I-AST Sensor; Mistras Group, Inc.: Princeton Junction, NJ, USA, 2015. [Google Scholar]
- Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing, 3rd ed.; Pearson: Upper Saddle River, NJ, USA, 2010; ISBN 978-0-13-198842-2. [Google Scholar]
- Ranganayakulu, S.V.; Goud, B.S.; Sastry, P.V.; Kumar, B.R. Calibration of acoustic emission system for materials characterization. Univers. J. Mater. Sci. 2015, 3, 62–69. [Google Scholar] [CrossRef]
- Lemons, D.S.; Langevin, P. An Introduction to Stochastic Processes in Physics: Containing “On the Theory of Brownian Motion” by Paul Langevin, Translated by Anthony Gythiel; Johns Hopkins University Press: Baltimore, MD, USA, 2002; ISBN 978-0-8018-6866-5. [Google Scholar]
Features | Equations | Features | Equations | Features | Equations |
---|---|---|---|---|---|
Short time energy (STE) | Standard deviation (STD, σ) | Skewness (SKE) | |||
Root mean square (RMS) | Zero crossing rate (ZCR) | Spectral peak (SPP) | |||
Average amplitude (AVA) | Entropy (ETY) | Spectral centroid (SPC, ) | |||
Mean (MEA, µ) | Kurtosis (KUS) | Spectral spread (SPS) |
P0 | P1 | P2 | ||||
---|---|---|---|---|---|---|
NFA | NFE | NFA | NFE | NFA | NFE | |
L0 | 600 | 30,000 | 600 | 30,000 | 600 | 30,000 |
L1 | 200 | 10,000 | 200 | 10,000 | 200 | 10,000 |
L2 | 200 | 10,000 | 200 | 10,000 | 200 | 10,000 |
L3 | 200 | 10,000 | 200 | 10,000 | 200 | 10,000 |
STE | RMS | AVA | MEA | STD | ZCR | ETY | KUS | SKE | SPP | SPC | SPS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
P0 | 57.7 | 36.5 | 37.3 | −30.2 | 36.2 | 10.8 | 4.0 | 6.9 | −18.0 | 1.8 | 7.0 | 8.9 |
P1 | 71.9 | 44.2 | 44.4 | −0.2 | 44.0 | 10.2 | −1.7 | 3.3 | −9.1 | 2.0 | 7.8 | 7.6 |
P2 | 77.7 | 47.2 | 47.4 | 5.1 | 47.1 | 13.3 | −5.6 | 1.1 | −6.5 | 3.3 | 11.1 | 9.0 |
P0 | P1 | P2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | tD | tE | A | tD | tE | A | tD | tE | ||
R15i Ch1 | L0 | 97.2 | 246 | 214 | 99.7 | 246 | 214 | 99.8 | 246 | 214 |
L1 | 92.8 | 82 | 74 | 99.0 | 82 | 74 | 99.3 | 82 | 74 | |
L2 | 100 | 82 | 74 | 100 | 82 | 74 | 100 | 82 | 74 | |
L3 | 100 | 82 | 74 | 100 | 82 | 74 | 100 | 82 | 74 | |
R15i Ch2 | L0 | 99.9 | 246 | 214 | 100 | 246 | 214 | 100 | 246 | 214 |
L1 | 99.7 | 82 | 74 | 100 | 82 | 74 | 100 | 82 | 74 | |
L2 | 100 | 82 | 74 | 100 | 82 | 74 | 100 | 82 | 74 | |
L3 | 100 | 82 | 74 | 100 | 82 | 74 | 100 | 82 | 74 | |
Average | 98.7 | 123 | 109 | 99.8 | 123 | 109 | 99.9 | 123 | 109 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quy, T.B.; Kim, J.-M. Real-Time Leak Detection for a Gas Pipeline Using a k-NN Classifier and Hybrid AE Features. Sensors 2021, 21, 367. https://doi.org/10.3390/s21020367
Quy TB, Kim J-M. Real-Time Leak Detection for a Gas Pipeline Using a k-NN Classifier and Hybrid AE Features. Sensors. 2021; 21(2):367. https://doi.org/10.3390/s21020367
Chicago/Turabian StyleQuy, Thang Bui, and Jong-Myon Kim. 2021. "Real-Time Leak Detection for a Gas Pipeline Using a k-NN Classifier and Hybrid AE Features" Sensors 21, no. 2: 367. https://doi.org/10.3390/s21020367
APA StyleQuy, T. B., & Kim, J.-M. (2021). Real-Time Leak Detection for a Gas Pipeline Using a k-NN Classifier and Hybrid AE Features. Sensors, 21(2), 367. https://doi.org/10.3390/s21020367