A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion
Abstract
:1. Introduction
2. Basic Theory
2.1. Convolutional Neural Network
2.2. Fully Convolutional Neural Network
2.3. LSTM Neural Network
- (1)
- Forget gate:
- (2)
- Input gate and memory unit update
- (3)
- Output gate
2.4. Evaluating Metrics
3. 1-FCLCNN-LSTM Prediction Mode
3.1. Overall Frameworks
Algorithm 1 Spatio-temporal Feature Fusion Algorithm |
Input: INP1, INP2 Output: Spatio-temporal fusion feature |
|
Algorithm 2 RUL Prediction Algorithm |
Input: fusion feature Output:RUL |
|
3.2. Model Settings
3.2.1. 1-FCLCNN Network
3.2.2. LSTM Network
3.2.3. Fully Connected Layer
3.3. The Process of Model Training
Algorithm 3 1-FCL CNN -LSTM training algorithm |
Input: C-MAPSS dataset(FD001, FD003) Output: 1-FCLCNN -LSTM model based on weight determination. |
|
4. Experiments and Analysis
4.1. C-MAPSS Data Set
4.2. Data Preprocessing
4.3. Parameter Settings
4.4. Experimental Results and Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, J.; Bai, P.; Qin, D.T.; Lim, T.C.; Yang, P.W.; Zhang, H. Study on vibration characteristics of fan shaft of geared turbofan engine with sudden imbalance caused by blade off. J. Vib. Acoust. 2018, 140, 1–14. [Google Scholar] [CrossRef]
- Tuzcu, H.; Hret, Y.; Caliskan, H. Energy, environment and enviroeconomic analyses and assessments of the turbofan engine used in aviation industry. Environ. Prog. Sustain. Energy 2020, 3, e13547. [Google Scholar] [CrossRef]
- You, Y.Q.; Sun, J.B.; Ge, B.; Zhao, D.; Jiang, J. A data-driven M2 approach for evidential network structure learning. Knowl. Based Syst. 2020, 187, 104800–104810. [Google Scholar] [CrossRef]
- De Oliveira da Costa, P.R.; Akcay, A.; Zhang, Y.Q.; Kaymak, U. Attention and long short-term memory network for remaining useful lifetime predictions of turbofan engine degradation. Int. J. Progn. Health Manag. 2020, 10, 34. [Google Scholar]
- Ghorbani, S.; Salahshoor, K. Estimating remaining useful life of turbofan engine using data-level fusion and feature-level fusion. J. Fail. Anal. Prev. 2020, 20, 323–332. [Google Scholar] [CrossRef]
- Sun, H.; Guo, Y.Q.; Zhao, W.L. Fault detection for aircraft turbofan engine using a modified moving window KPCA. IEEE Access 2020, 8, 166541–166552. [Google Scholar] [CrossRef]
- Ahmadzadeh, F.; Lundberg, J. Remaining useful life estimation: Review. Int. J. Syst. Assur. Eng. Manag. 2014, 5, 461–474. [Google Scholar] [CrossRef]
- Kok, C.; Jahmunah, V.; Shu, L.O.; Acharya, U.R. Automated prediction of sepsis using temporal convolutional network. Comput. Biol. Med. 2020, 127, 103957. [Google Scholar] [CrossRef]
- Cheong, K.H.; Poeschmann, S.; Lai, J.; Koh, J.M. Practical automated video analytics for crowd monitoring and counting. IEEE Access 2019, 7, 83252–183261. [Google Scholar] [CrossRef]
- Saravanakumar, R.; Krishnaraj, N.; Venkatraman, S.; Sivakumar, B.; Prasanna, S.; Shankar, K. Hierarchical symbolic analysis and particle swarm optimization based fault diagnosis model for rotating machineries with deep neural networks. Measurement 2021, 171, 108771. [Google Scholar] [CrossRef]
- Du, X.L.; Chen, Z.G.; Zhang, N.; Xu, X. Bearing fault diagnosis based on Synchronous Extrusion S transformation and deep learning. Modul. Mach. Tool Autom. Process. Technol. 2019, 5, 90–93, 97. [Google Scholar]
- Peng, C.; Tang, Z.H.; Gui, W.H.; He, J. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. J. Ind. Manag. Optim. 2019, 13, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Tang, Z.H.; Gui, W.H.; Chen, Q.; Zhang, L.X.; Yuan, X.P.; Deng, X.J. Review of key technologies and progress in industrial equipment health management. IEEE Access 2020, 8, 151764–151776. [Google Scholar] [CrossRef]
- Yang, Y.K.; Fan, W.B.; Peng, D.X. Driving behavior recognition based on one-dimensional convolutional neural network and noise reduction autoencoder. Comput. Appl. Softw. 2020, 37, 171–176. [Google Scholar]
- Peng, C.; Chen, Q.; Zhou, X.H.; Tang, Z.H. Wind turbine blades icing failure prognosis based on balanced data and improved entropy. Int. J. Sens. Netw. 2020, 34, 126–135. [Google Scholar] [CrossRef]
- Peng, C.; Liu, M.; Yuan, X.P.; Zhang, L.X. A new method for abnormal behavior propagation in networked software. J. Internet Technol. 2018, 19, 489–497. [Google Scholar]
- Zhang, J.D.; Zou, Y.S.; Deng, J.L.; Zhang, X.L. Bearing remaining life prediction based on full convolutional layer neural networks. China Mech. Eng. 2019, 30, 2231–2235. [Google Scholar]
- Yang, B.Y.; Liu, R.N.; Zio, E. Remaining useful life prediction based on a double-convolutional neural network architecture. IEEE Trans. Ind. Electron. 2019, 66, 9521–9530. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Srivastava, G.; Wu, H.T.; Chen, M.Y. Remaining useful life prediction based on state assessment using edge computing on deep learning. Comput. Commun. 2020, 160, 91–100. [Google Scholar] [CrossRef]
- Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolutional neural networks. Reliab. Eng. Syst. Saf. 2018, 172, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.J.; Wang, P.; Yuan, R.Q.; Gao, R.X. Long short-term memory for machine remaining life prediction. J. Manuf. Syst. 2018, 48, 78–86. [Google Scholar] [CrossRef]
- Kong, Z.; Cui, Y.; Xia, Z.; Lv, H. Convolution and long short-term memory hybrid deep neural networks for remaining useful life prognostics. Appl. Sci. 2019, 9, 4156. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Xia, T.B.; Zheng, Y.; Zhuo, P.C.; Pan, E.S. Residual life prediction of turbofan Engines based on Autoencoder-BLSTM. Comput. Integr. Manuf. Syst. 2019, 25, 1611–1619. [Google Scholar]
- Yan, C.M.; Wang, W. Development and application of a convolutional neural network model. Comput. Sci. Explor. 2020, 18, 1–22. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; pp. 326–366. [Google Scholar]
- Estrach, J.B.; Szlam, A.; LeCun, Y. Signal recovery from pooling representations. In Proceedings of the 31st International Conference on Machine Learning (ICML), Beijing, China, 21–26 June 2014; pp. 307–315. [Google Scholar]
- Jonathan, L.; Shelhamer, E.; Darrell, T.; Berkeley, U.C. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar]
- Zhang, Y.; Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y. Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 2019, 12, 312–325. [Google Scholar]
- Al-Dulaimi, A.; Zabihi, S.; Asif, A.; Mohammadi, A. A multimodal and hybrid deep neural network model for Remaining Useful Life estimation. Comput. Ind. 2019, 108, 186–196. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Famouri, M.; Azimifar, Z.; Taheri, M. Fast linear SVM validation based on early stopping in iterative learning. Int. J. Pattern Recognit. Artif. Intell. 2015, 29, 1551013. [Google Scholar] [CrossRef]
- Loffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Ramasso, E.; Gouriveau, R. Prognostics in switching systems: Evidential Markovian classification of real-time neuro-fuzzy predictions. In Proceedings of the Prognostics and Health Management Conference IEEE PHM, Portland, OR, USA, 10–16 October 2010. [Google Scholar]
- Frederick, D.; de Castro, J.; Litt, J. User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS); NASA/ARL: Hanover, MD, USA, 2007. [Google Scholar]
- Saxena, A.; Goebel, K.; Simon, D.; Eklund, N. Damage propagation modeling for aircraft engine run-to-failure simulation. In Proceedings of the 1st International Conference on Prognostics and Health Management (PHM08), Denver, CO, USA, 6–9 October 2008. [Google Scholar]
- Peel, L. Data driven prognostics using a Kalman filter ensemble of neural network models. In Proceedings of the 2008 International Conference on Prognostics and Health Management IEEE, Denver, CO, USA, 6–9 October 2008. [Google Scholar]
- Li, N.; Lei, Y.; Gebraeel, N.; Wang, Z.; Cai, X.; Xu, P.; Wang, B. Multi-sensor data-driven remaining useful life prediction of semi-observable systems. IEEE Trans. Ind. Electron. 2020, 1. [Google Scholar] [CrossRef]
- Gou, B.; Xu, Y.; Feng, X. State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method. IEEE Trans. Veh. Technol. 2020, 69, 10854–10867. [Google Scholar] [CrossRef]
- Hsu, C.; Jiang, J. Remaining useful life estimation using long short-term memory deep learning. In Proceedings of the 2018 IEEE International Conference on Applied System Innovation (ICASI), Tokyo, Japan, 13–17 April 2018; pp. 58–61. [Google Scholar]
- Xu, S.; Hou, G.S. Prediction of remaining service life of turbofan engine based on VAE-D2GAN. Comput. Integr. Manuf. Syst. 2020, 23, 1–17. [Google Scholar]
- Khelif, R.; Chebel-Morello, B.; Malinowski, S.; Laajili, E.; Fnaiech, F.; Zerhouni, N. Direct remaining useful life estimation based on support vector regression. IEEE Trans. Ind. Electron. 2016, 64, 2276–2285. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, L.; Liu, C. Uncertainty Prediction of Remaining Useful Life Using Long Short-Term Memory Network Based on Bootstrap Method. In Proceedings of the IEEE International Conference on Prognostics and Health Management (ICPHM), Seattle, WA, USA, 11–13 June 2018; pp. 1–8. [Google Scholar]
- Zheng, S.; Ristovski, K.; Farahat, A.; Gupta, C. Long short-term memory network for remaining useful life estimation. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 88–95. [Google Scholar]
- Zhang, C.; Lim, P.; Qin, A.; Tan, K. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE Trans. Neural Netw. Learn Syst. 2017, 28, 2306–2318. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.N.; Kim, I.Y.; Mechefske, C. Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme. Mech. Syst. Signal Process. 2019, 129, 764–780. [Google Scholar] [CrossRef]
- Babu, G.S.; Zhao, P.; Li, X. Deep convolutional neural network based regression approach for estimation of remaining useful life. In Proceedings of the International Conference on Database Systems for Advanced Applications, Dallas, TX, USA, 16–19 April 2016; pp. 214–228. [Google Scholar]
Serial NUMBER | Variable Name |
---|---|
1 | unit number |
2 | time, in cycles |
3 | operational setting 1 |
4 | operational setting 2 |
5 | operational setting 3 |
6 | sensor measurement 1 |
7 | sensor measurement 2 |
8 | … |
9 | sensor measurement26 |
Sensor Number | Sensor Description | Units |
---|---|---|
1 | (Fan inlet temperature) | (°R) |
2 | (LPC outlet temperature) | (°R) |
3 | (HPC outlet temperature) | (°R) |
4 | (LPT outlet temperature) | (°R) |
5 | (Fan inlet Pressure) | (psia) |
6 | (bypass-duct pressure) | (psia) |
7 | (HPC outlet pressure) | (psia) |
8 | (Physical fan speed) | (rpm) |
9 | (Physical core speed) | (rpm) |
10 | (Engine pressure ratio (P50/P2) | —— |
11 | (HPC outlet Static pressure) | (psia) |
12 | (Ratio of fuel flow to Ps30) | (pps/psia) |
13 | (Corrected fan speed) | (rpm) |
14 | (Corrected core speed) | (rpm) |
15 | (Bypass Ratio) | —— |
16 | (Burner fuel-air ratio) | —— |
17 | (Bleed Enthalpy) | —— |
18 | (Required fan speed) | (rpm) |
19 | (Required fan conversion speed) | (rpm) |
20 | (High-pressure turbines Cool air flow) | (lb/s) |
21 | (Low-pressure turbines Cool air flow) | (lb/s) |
Data Set | Training Set | Test Set | Operating Conditions | Fault Mode | Number of Sensors | Type of Operating Parameters |
---|---|---|---|---|---|---|
FD001 | 100 | 100 | 1 | 1 | 21 | 3 |
FD003 | 100 | 100 | 1 | 2 | 21 | 3 |
Data Subset | FD001 | FD003 | |
---|---|---|---|
Parameter | |||
epoch | 60 | 60 | |
batch size | 256 | 512 | |
dropout | 0.2 | 0.2 |
FD001 | FD003 | |
---|---|---|
CNN | 8.25 | 14.00 |
1-FCLCNN-LSTM | 4.87 | 7.56 |
FD001 | FD003 | |
---|---|---|
CNN | 17.22 | 15.50 |
FCLCNN-LSTM | 11.17 | 9.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.; Chen, Y.; Chen, Q.; Tang, Z.; Li, L.; Gui, W. A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion. Sensors 2021, 21, 418. https://doi.org/10.3390/s21020418
Peng C, Chen Y, Chen Q, Tang Z, Li L, Gui W. A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion. Sensors. 2021; 21(2):418. https://doi.org/10.3390/s21020418
Chicago/Turabian StylePeng, Cheng, Yufeng Chen, Qing Chen, Zhaohui Tang, Lingling Li, and Weihua Gui. 2021. "A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion" Sensors 21, no. 2: 418. https://doi.org/10.3390/s21020418
APA StylePeng, C., Chen, Y., Chen, Q., Tang, Z., Li, L., & Gui, W. (2021). A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion. Sensors, 21(2), 418. https://doi.org/10.3390/s21020418