A Comprehensive Review of Continuous Glucose Monitoring Accuracy during Exercise Periods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
- Aerobic: Patients usually exercised cycling (cycloergometer) or walking on a treadmill completing bouts during an amount of time and certain intensity of a fraction of the patients’ maximum capacity. Rest time was also registered.
- Resistance: Patients exercised doing bouts of weight lifting exercises, ensuring that major muscles groups were targeted (leg press, bench press, leg curl, lat pull-down, abdominal crunches, shoulder press, seated row, etc.). Exercise was performed at a certain intensity and establishing the time between one bout and the next one.
- High Intensity Interval Exercise (HIIE): Patients exercised doing periods of maximum intensity exercise, usually involving very fast repetitions, alternated with short periods of resting or low-to-moderate intensity exercise. This type of exercise usually ends with exhaustion, and protocols can be very diverse.
- Intermittent: Patients exercised in intervals in which the intensity of the activity varied between different levels. Each interval is repeated cyclically until a determinate resting time is reached. For example, a one hour light running exercise with periodic bouts of faster sprint reaching 80% VO2 max every 10 min would qualify as intermittent.
- Gold standard: measurements were made in the laboratory by a glucose analyser from blood samples (Yellow Springs Instrument (YSI) or an equivalent device).
- Self-Monitoring Blood Glucose (SMBG): a glucometer was used involving fingerstick measurements.
2.2. Search Methods
2.3. Study Selection
2.4. Statistical Methods
3. Results
3.1. Studies Selected
Paper Extracted | Sensor Used | MARD Rest (%) | Reference |
---|---|---|---|
Gross et al. [74] | CGMS | 18 | SMBG |
Mastrototaro et al. [69] | Guardian Real-Time | 15.8 | SMBG |
Nakamura et al. [72] | Dexcom G4 Platinum | 13 | GS |
Rodbard et al. [71] | MiniMed 640G-E2 | 14.2 | GS |
Garg et al. [73] | MiniMed 670G-S3 | 10.3 | GS |
Hansen et al. [11] | FreeStyle Libre System | 16.7 | SMBG |
Slover et al. [70] | Guardian-Connect | 10.9 | SMBG |
- CGMS: Medtronic MiniMed Inc., Northridge, CA, USA.
- Guardian Real-Time: Medtronic MiniMed Inc., Northridge, CA, USA.
- Guardian Connect: Medtronic MiniMed Inc., Northridge, CA, USA.
- Dexcom G4 Platinum: Dexcom Inc., San Diego, CA, USA.
- iPro2: Medtronic MiniMed Inc., Northridge, CA, USA.
- FreeStyle Libre System: Abbott Diabetes Care, Maidenhead, UK.
- Paradigm Veo-E2: Medtronic MiniMed Inc., Northridge, CA, USA.
- MiniMed 640G-E2: Medtronic MiniMed Inc., Northridge, CA, USA.
- MiniMed 670G-S3: Medtronic MiniMed Inc., Northridge, CA, USA.
- Dexcom G6: Dexcom Inc., San Diego, CA, USA.
3.2. Meta-Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
T1D | Type 1 Diabetes |
CGM | Continuous Glucose Monitoring |
IDF | International Diabetes Federation |
FGM | Flash Glucose Monitoring |
MARD | Mean Absolute Relative Difference |
MAD | Mean Absolute Difference |
HIIE | High Intensity Interval Exercise |
MICT | Moderate-Intensity Continuous Training |
SMBG | Self-Monitoring Blood Glucose |
NCBI | National Center for Biotechnology Information |
NLM | National Library of Medicine |
CG | Capillary Glucose |
GS | Gold Standard |
References
- International Diabetes Federation. IDF Diabetes Atlas; IDF: Brussels, Belgium, 2019. [Google Scholar]
- Kumareswaran, K.; Elleri, D.; Allen, J.M.; Caldwell, K.; Nodale, M.; Wilinska, M.E.; Amiel, S.A.; Hovorka, R.; Murphy, H.R. Accuracy of continuous glucose monitoring during exercise in type 1 diabetes pregnancy. Diabetes Technol. Ther. 2013, 15, 223–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, A.; Riddell, M.C.; Potashner, D.; Brown, R.E.; Aronson, R. Time Lag and Accuracy of Continuous Glucose Monitoring during High Intensity Interval Training in Adults with Type 1 Diabetes. Diabetes Technol. Ther. 2019, 21, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Adolfsson, P.; Nilsson, S.; Lindblad, B. Continuous glucose monitoring system during physical exercise in adolescents with type 1 diabetes. Acta Paediatr. Int. J. Paediatr. 2011, 100, 1603–1609. [Google Scholar] [CrossRef] [PubMed]
- Herrington, S.J.; Gee, D.L.; Dow, S.D.; Monosky, K.A.; And, E.D.; Pritchett, K.L. Comparison of glucose monitoring methods during steady-state exercise in women. Nutrients 2012, 4, 1282–1292. [Google Scholar] [CrossRef] [PubMed]
- Giani, E.; Macedoni, M.; Barilli, A.; Petitti, A.; Mameli, C.; Bosetti, A.; Cristiano, A.; Radovanovic, D.; Santus, P.; Zuccotti, G.V. Performance of the Flash Glucose Monitoring System during exercise in youth with Type 1 diabetes. Diabetes Res. Clin. Pract. 2018, 146, 321–329. [Google Scholar] [CrossRef]
- Iscoe, K.E.; Campbell, J.E.; Jamnik, V.; Perkins, B.A.; Riddell, M.C. Efficacy of continuous real-time blood glucose monitoring during and after prolonged high-intensity cycling exercise: Spinning with a continuous glucose monitoring system. Diabetes Technol. Ther. 2006, 8, 627–635. [Google Scholar] [CrossRef]
- Laguna, A.J.; Díez, J.L.; Giménez, M.; Bondia, J. Enhanced accuracy of continuous glucose monitoring during exercise through physical activity tracking integration. Sensors 2019, 19, 3757. [Google Scholar] [CrossRef] [Green Version]
- Zaharieva, D.P.; McGaugh, S.; Davis, E.A.; Riddell, M.C. Advances in Exercise, Physical Activity, and Diabetes. Diabetes Technol. Ther. 2020, 22, S109–S118. [Google Scholar] [CrossRef] [Green Version]
- Castle, J.R.; Rodbard, D. How Well Do Continuous Glucose Monitoring Systems Perform during Exercise? Diabetes Technol. Ther. 2019, 21, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Hansen, E.A.; Klee, P.; Dirlewanger, M.; Bouthors, T.; Elowe-Gruau, E.; Stoppa-Vaucher, S.; Phan-Hug, F.; Antoniou, M.C.C.; Pasquier, J.; Dwyer, A.A.; et al. Accuracy, satisfaction and usability of a flash glucose monitoring system among children and adolescents with type 1 diabetes attending a summer camp. Pediatr. Diabetes 2018, 19, 1276–1284. [Google Scholar] [CrossRef]
- Damiano, E.R.; McKeon, K.; El-Khatib, F.H.; Zheng, H.; Nathan, D.M.; Russell, S.J. A comparative effectiveness analysis of three continuous glucose monitors: The Navigator, G4 Platinum, and Enlite. J. Diabetes Sci. Technol. 2014, 8, 699–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 5 October 2020).
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Hartung, J.; Knapp, G. On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat. Med. 2001, 20, 1771–1782. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Cook, S.; Lee, J.S.; Han, B. Comparison of Two Meta-Analysis Methods: Inverse-Variance-Weighted Average and Weighted Sum of Z-Scores. Genom. Inform. 2016, 14, 173–180. [Google Scholar] [CrossRef]
- IntHout, J.; Ioannidis, J.P.; Borm, G.F. The Hartung–Knapp-Sidik–Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med. Res. Methodol. 2014, 14, 25. [Google Scholar] [CrossRef] [Green Version]
- van Aert, R.C.; Jackson, D. A new justification of the Hartung–Knapp method for random-effects meta-analysis based on weighted least squares regression. Res. Synth. Methods 2019, 10, 515–527. [Google Scholar] [CrossRef] [Green Version]
- Hedges, L.V. Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators Author (s): Larry V. Hedges Published by: American Educational Research Association and American Statistical Association Journaet o Educational Statis6tiL Key Words: Me. J. Educ. Stat. 2014, 6, 107–128. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Spiegelhalter, D.J. A re-evaluation of random-effects meta-analysis. J. R. Stat. Soc. Ser. A Stat. Soc. 2009, 172, 137–159. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 2018, 27, 1785–1805. [Google Scholar] [CrossRef] [Green Version]
- Fayolle, C.; Brun, J.; Bringer, J.; Mercier, J.; Renard, E. Accuracy of continuous subcutaneous glucose monitoring with the GlucoDay® in type 1 diabetic patients treated by subcutaneous insulin infusion during exercise of low versus high intensity. Diabetes Metab. 2006, 32, 313–320. [Google Scholar] [CrossRef]
- Adolfsson, P.; Örnhagen, H.; Jendle, J. The benefits of continuous glucose monitoring and a glucose monitoring schedule in individuals with type 1 diabetes during recreational diving. J. Diabetes Sci. Technol. 2008, 2, 778–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riddell, M.C.; Milliken, J. Preventing exercise-induced hypoglycaemia in type 1 diabetes using real-time continuous glucose monitoring and a new carbohydrate intake algorithm: An observational field study. Diabetes Technol. Ther. 2011, 13, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Yardley, J.E.; Kenny, G.P.; Perkins, B.A.; Riddell, M.C.; Malcolm, J.; Boulay, P.; Khandwala, F.; Sigal, R.J. Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. Diabetes Care 2012, 35, 669–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumareswaran, K.; Elleri, D.; Allen, J.M.; Caldwell, K.; Westgate, K.; Brage, S.; Raymond-Barker, P.; Nodale, M.; Wilinska, M.E.; Amiel, S.A.; et al. Physical activity energy expenditure and glucose levels in pregnant women with type 1 diabetes during free-living and controlled conditions. Diabetes 2013, 36. [Google Scholar] [CrossRef] [Green Version]
- Yardley, J.E.; Sigal, R.J.; Kenny, G.P.; Riddell, M.C.; Lovblom, L.E.; Perkins, B.A. Point Accuracy of interstitial continuous glucose monitoring during exercise in type 1 diabetes. Diabetes Technol. Ther. 2013, 15, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Radermecker, R.P.; Fayolle, C.; Brun, J.F.; Bringer, J.; Renard, E. Accuracy assessment of online glucose monitoring by a subcutaneous enzymatic glucose sensor during exercise in patients with type 1 diabetes treated by continuous subcutaneous insulin infusion. Diabetes Metab. 2013, 39, 258–262. [Google Scholar] [CrossRef]
- Yousef, M.; Westman, A.; Lindberg, A.; De Lacerda, C.; Jendle, J. Glucose changes and working memory in individuals with type 1 diabetes during air pressure changes simulating skydiving. Diabetes Technol. Ther. 2014, 16, 56–62. [Google Scholar] [CrossRef]
- Campbell, M.D.; West, D.J.; Bain, S.C.; Kingsley, M.I.; Foley, P.; Kilduff, L.; Turner, D.; Gray, B.; Stephens, J.W.; Bracken, R.M. Simulated games activity vs continuous running exercise: A novel comparison of the glycemic and metabolic responses in T1DM patients. Scand. J. Med. Sci. Sports 2015, 25, 216–222. [Google Scholar] [CrossRef]
- Moser, O.; Tschakert, G.; Mueller, A.; Groeschl, W.; Pieber, T.R.; Obermayer-Pietsch, B.; Koehler, G.; Hofmann, P. Effects of high-intensity interval exercise versus moderate continuous exercise on glucose homoeostasis and hormone response in patients with type 1 diabetes mellitus using novel ultra-long-acting insulin. PLoS ONE 2015, 10, e0136489. [Google Scholar] [CrossRef]
- van Dijk, J.W.; Eijsvogels, T.M.; Nyakayiru, J.; Schreuder, T.H.; Hopman, M.T.; Thijssen, D.H.; van Loon, L.J. Glycemic control during consecutive days with prolonged walking exercise in individuals with type 1 diabetes mellitus. Diabetes Res. Clin. Pract. 2016, 117, 74–81. [Google Scholar] [CrossRef]
- Moser, O.; Mader, J.K.; Tschakert, G.; Mueller, A.; Groeschl, W.; Pieber, T.R.; Koehler, G.; Messerschmidt, J.; Hofmann, P. Accuracy of continuous glucose monitoring (CGM) during continuous and high-intensity interval exercise in patients with type 1 diabetes mellitus. Nutrients 2016, 8, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bally, L.; Zueger, T.; Pasi, N.; Carlos, C.; Paganini, D.; Stettler, C. Accuracy of continuous glucose monitoring during differing exercise conditions. Diabetes Res. Clin. Pract. 2016, 112, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taleb, N.; Emami, A.; Suppere, C.; Messier, V.; Legault, L.; Chiasson, J.L.; Rabasa-Lhoret, R.; Haidar, A. Comparison of Two Continuous Glucose Monitoring Systems, Dexcom G4 Platinum and Medtronic Paradigm Veo Enlite System, at Rest and during Exercise. Diabetes Technol. Ther. 2016, 18, 561–567. [Google Scholar] [CrossRef] [PubMed]
- McAuley, S.A.; Horsburgh, J.C.; Ward, G.M.; La Gerche, A.; Gooley, J.L.; Jenkins, A.J.; MacIsaac, R.J.; O’Neal, D.N. Insulin pump basal adjustment for exercise in type 1 diabetes: A randomised crossover study. Diabetologia 2016, 59. [Google Scholar] [CrossRef] [PubMed]
- Aberer, F.; Hajnsek, M.; Rumpler, M.; Zenz, S.; Baumann, P.M.; Elsayed, H.; Puffing, A.; Treiber, G.; Pieber, T.R.; Sourij, H.; et al. Evaluation of subcutaneous glucose monitoring systems under routine environmental conditions in patients with type 1 diabetes. Diabetes Obes. Metab. 2017, 19, 1051–1055. [Google Scholar] [CrossRef] [Green Version]
- Gawrecki, A.; Naskret, D.; Niedzwiecki, P.; Duda-Sobczak, A.; Araszkiewicz, A.; Zozulinska-Ziolkiewicz, D. High-intensity Exercise in Men with Type 1 Diabetes and Mode of Insulin Therapy. Int. J. Sports Med. 2017, 38, 329–335. [Google Scholar] [CrossRef]
- Jayawardene, D.C.; McAuley, S.A.; Horsburgh, J.C.; Gerche, A.L.; Jenkins, A.J.; Ward, G.M.; MacIsaac, R.J.; Roberts, T.J.; Grosman, B.; Kurtz, N.; et al. Closed-loop insulin delivery for adults with type 1 diabetes undertaking high-intensity interval exercise versus moderate-intensity exercise: A randomized, crossover study. Diabetes Technol. Ther. 2017, 19, 340–348. [Google Scholar] [CrossRef]
- Zaharieva, D.; Yavelberg, L.; Jamnik, V.; Cinar, A.; Turksoy, K.; Riddell, M.C. The effects of basal insulin suspension at the start of exercise on blood glucose levels during continuous versus circuit-based exercise in individuals with type 1 diabetes on continuous subcutaneous insulin infusion. Diabetes Technol. Ther. 2017, 19, 370–378. [Google Scholar] [CrossRef]
- Reddy, R.; El Youssef, J.; Winters-Stone, K.; Branigan, D.; Leitschuh, J.; Castle, J.; Jacobs, P.G.; ElYoussef, J.; Branigan, D.; Castle, J.; et al. The effect of exercise on sleep in adults with type 1 diabetes. Diabetes Obes. Metab. 2018, 20, 443–447. [Google Scholar] [CrossRef]
- Quirós, C.; Bertachi, A.; Giménez, M.; Biagi, L.; Viaplana, J.; Viñals, C.; Vehí, J.; Conget, I.; Bondia, J. Blood glucose monitoring during aerobic and anaerobic physical exercise using a new artificial pancreas system. Endocrinol. Diabetes Nutr. 2018, 65, 342–347. [Google Scholar] [CrossRef]
- Larose, S.; Taleb, N.; Roy-Fleming, A.; Suppere, C.; Messier, V.; Rabasa-Lhoret, R. Comparison of Continuous Glucose Monitoring with Capillary Glucose Levels and Dynamics of Accuracy Changes during Moderate-Intensity Aerobic Exercise in Patients with Type 1 Diabetes. Can. J. Diabetes 2018, 42, S51–S52. [Google Scholar] [CrossRef]
- Aronson, R.; Brown, R.E.; Li, A.; Riddell, M.C. Optimal insulin correction factor in post–high-intensity exercise hyperglycemia in adults with type 1 diabetes: The FIT study. Diabetes Care 2019, 42, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, R.; Wittenberg, A.; Castle, J.R.; El Youssef, J.; Winters-Stone, K.; Gillingham, M.; Jacobs, P.G. Effect of Aerobic and Resistance Exercise on Glycemic Control in Adults With Type 1 Diabetes; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 43, pp. 406–414.e1. [Google Scholar] [CrossRef]
- Biagi, L.; Bertachi, A.; Quirós, C.; Giménez, M.; Conget, I.; Bondia, J.; Vehí, J. Accuracy of continuous glucose monitoring before, during, and after aerobic and anaerobic exercise in patients with type 1 diabetes mellitus. Biosensors 2018, 8, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulrahman, A.; Manhas, J.; Linnane, H.; Gurney, M.; Fitzgerald, C. Annals of Clinical Case Reports The Use of Continuous Glucose Monitoring for Sport in. Ann. Clin. Case Rep. Diabetol. 2018, 3, 1–5. [Google Scholar]
- Castle, J.R.; Youssef, J.E.; Wilson, L.M.; Reddy, R.; Resalat, N.; Branigan, D.; Ramsey, K.; Leitschuh, J.; Rajhbeharrysingh, U.; Senf, B.; et al. Randomized outpatient trial of single- and dual-hormone closed-loop systems that adapt to exercise using wearable sensors. Diabetes Care 2018, 41. [Google Scholar] [CrossRef] [Green Version]
- Moser, O.; Pandis, M.; Aberer, F.; Kojzar, H.; Hochfellner, D.; Elsayed, H.; Motschnig, M.; Augustin, T.; Kreuzer, P.; Pieber, T.R.; et al. A head-to-head comparison of personal and professional continuous glucose monitoring systems in people with type 1 diabetes: Hypoglycaemia remains the weak spot. Diabetes Obes. Metab. 2019, 21, 1043–1048. [Google Scholar] [CrossRef]
- Steineck, I.I.K.; Mahmoudi, Z.; Ranjan, A.; Schmidt, S.; Jørgensen, J.B.; Nørgaard, K. Comparison of Continuous Glucose Monitoring Accuracy between Abdominal and Upper Arm Insertion Sites. Diabetes Technol. Ther. 2019, 21, 295–302. [Google Scholar] [CrossRef]
- Burckhardt, M.A.; Chetty, T.; Smith, G.J.; Adolfsson, P.; De Bock, M.; Jones, T.W.; Davis, E.A. Use of Continuous Glucose Monitoring Trends to Facilitate Exercise in Children with Type 1 Diabetes. Diabetes Technol. Ther. 2019, 21, 51–55. [Google Scholar] [CrossRef]
- Forlenza, G.P.; Buckingham, B.A.; Christiansen, M.P.; Paul Wadwa, R.; Peyser, T.A.; Lee, J.B.; O’Connor, J.; Dassau, E.; Huyett, L.M.; Layne, J.E.; et al. Performance of Omnipod Personalized Model Predictive Control Algorithm with Moderate Intensity Exercise in Adults with Type 1 Diabetes. Diabetes Technol. Ther. 2019, 21, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Larose, S.; Rabasa-Lhoret, R.; Roy-Fleming, A.; Suppère, C.; Tagougui, S.; Messier, V.; Taleb, N. Changes in Accuracy of Continuous Glucose Monitoring Using Dexcom G4 Platinum over the Course of Moderate Intensity Aerobic Exercise in Type 1 Diabetes. Diabetes Technol. Ther. 2019, 21, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Zaharieva, D.P.; Turksoy, K.; McGaugh, S.M.; Pooni, R.; Vienneau, T.; Ly, T.; Riddell, M.C. Lag Time Remains with Newer Real-Time Continuous Glucose Monitoring Technology during Aerobic Exercise in Adults Living with Type 1 Diabetes. Diabetes Technol. Ther. 2019, 21, 313–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moser, O.; Eckstein, M.L.; Mueller, A.; Birnbaumer, P.; Aberer, F.; Koehler, G.; Sourij, C.; Kojzar, H.; Holler, P.; Simi, H.; et al. Impact of physical exercise on sensor performance of the FreeStyle Libre intermittently viewed continuous glucose monitoring system in people with Type 1 diabetes: A randomized crossover trial. Diabet. Med. 2019, 36, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Zaharieva, D.P.; Cinar, A.; Yavelberg, L.; Jamnik, V.; Riddell, M.C. No Disadvantage to Insulin Pump Off vs Pump On During Intermittent High-Intensity Exercise in Adults With Type 1 Diabetes. Can. J. Diabetes 2020, 44, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Toghi-Eshghi, S.R.; Yardley, J.E. Morning (Fasting) vs Afternoon Resistance Exercise in Individuals with Type 1 Diabetes: A Randomized Crossover Study. J. Clin. Endocrinol. Metab. 2019, 104, 5217–5224. [Google Scholar] [CrossRef]
- Steineck, I.I.; Ranjan, A.; Schmidt, S.; Clausen, T.R.; Holst, J.J.; Nørgaard, K. Preserved glucose response to low-dose glucagon after exercise in insulin-pump-treated individuals with type 1 diabetes: A randomised crossover study. Diabetologia 2019, 62, 582–592. [Google Scholar] [CrossRef] [Green Version]
- Gawrecki, A.; Michalak, A.; Gałczyński, S.; Dachowska, I.; Zozulińska-Ziółkiewicz, D.; Szadkowska, A. Physical workload and glycemia changes during football matches in adolescents with type 1 diabetes can be comparable. Acta Diabetol. 2019, 56, 1191–1198. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.S.; Way, K.L.; Johnson, N.A.; Twigg, S.M. High-intensity interval exercise and hypoglycaemia minimisation in adults with type 1 diabetes: A randomised cross-over trial. J. Diabetes Complicat. 2020, 34, 107514. [Google Scholar] [CrossRef]
- Moser, O.; Eckstein, M.L.; Mueller, A.; Birnbaumer, P.; Aberer, F.; Koehler, G.; Sourij, C.; Kojzar, H.; Pferschy, P.; Dietz, P.; et al. Pre-exercise blood glucose levels determine the amount of orally administered carbohydrates during physical exercise in individuals with type 1 diabetes—A randomized cross-over trial. Nutrients 2019, 11, 1287. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.N.; Cocks, M.; Andrews, R.C.; Narendran, P.; Purewal, T.S.; Cuthbertson, D.J.; Wagenmakers, A.J.; Shepherd, S.O. Fasted high-intensity interval and moderate-intensity exercise do not lead to detrimental 24-hour blood glucose profiles. J. Clin. Endocrinol. Metab. 2019, 104, 111–117. [Google Scholar] [CrossRef]
- Williams, D.; Deere, R.; Moser, O.; McCarthy, O.; Pitt, J.; Bracken, R.; Sourij, H.; Bain, S.; Eckstein, M.; Hayes, J. Performance of the Freestyle Libre flash glucose monitoring (flash GM) system in individuals with type 1 diabetes: A secondary outcome analysis of a randomized crossover trial. Diabetes Obes. Metab. 2019, 21. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.N.; Cocks, M.; Andrews, R.C.; Narendran, P.; Purewal, T.S.; Cuthbertson, D.J.; Wagenmakers, A.J.; Shepherd, S.O. High-Intensity Interval Training Improves Aerobic Capacity Without a Detrimental Decline in Blood Glucose in People with Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2018, 104, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Mccarthy, O.; Eckstein, M.L.; Scott, S.N.; Fontana, F.Y.; Christiansen, M.P.; Stettler, C.; Fisher, M.; Bode, B.; Riddell, M.C.; Hayes, C.; et al. Glycemic responses to strenuous training in male professional cyclists with type 1 diabetes: A prospective observational study. BMJ Open Diabetes Res. Care 2020, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockman, N.K.; Sigal, R.J.; Kenny, G.P.; Riddell, M.C.; Perkins, B.A.; Yardley, J.E. Sex-Related Differences in Blood Glucose Responses to Resistance Exercise in Adults With Type 1 Diabetes: A Secondary Data Analysis. Can. J. Diabetes 2020, 44, 267–273.e1. [Google Scholar] [CrossRef] [PubMed]
- Fokkert, M.J.; Dijk, P.R.; Edens, M.A.; Díez, A.; Slingerland, R.J.; Gans, R.O.B.; Delgado, E.; Bilo, H.J.G. Performance of continuous glucose monitoring devices during intensive exercise conditions in people with diabetes: The Mont Blanc experience. Diabet. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Guillot, F.H.; Jacobs, P.G.; Wilson, L.M.; El Youssef, J.; Gabo, V.B.; Branigan, D.L.; Tyler, N.S.; Ramsey, K.; Riddell, M.C.; Castle, J.R. Accuracy of the dexcom G6 glucose sensor during aerobic, resistance, and interval exercise in adults with type 1 diabetes. Biosensors 2020, 10, 138. [Google Scholar] [CrossRef]
- Mastrototaro, J.; Shin, J.; Marcus, A.; Sulur, G. The accuracy and efficacy of real-time continuous glucose monitoring sensor in patients with type 1 diabetes. Diabetes Technol. Ther. 2008, 10, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Slover, R.H.; Tryggestad, J.B.; DiMeglio, L.A.; Fox, L.A.; Bode, B.W.; Bailey, T.S.; Brazg, R.; Christiansen, M.P.; Sherr, J.L.; Tsalikian, E.; et al. Accuracy of a Fourth-Generation Continuous Glucose Monitoring System in Children and Adolescents with Type 1 Diabetes. Diabetes Technol. Ther. 2018, 20, 576–584. [Google Scholar] [CrossRef]
- Rodbard, D. Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities. Diabetes Technol. Ther. 2016, 18, S23–S213. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Balo, A. The accuracy and efficacy of the dexcom G4 platinum continuous glucose monitoring system. J. Diabetes Sci. Technol. 2015, 9, 1021–1026. [Google Scholar] [CrossRef]
- Garg, S.K.; Weinzimer, S.A.; Tamborlane, W.V.; Buckingham, B.A.; Bode, B.W.; Bailey, T.S.; Brazg, R.L.; Ilany, J.; Slover, R.H.; Anderson, S.M.; et al. Glucose Outcomes with the In-Home Use of a Hybrid Closed-Loop Insulin Delivery System in Adolescents and Adults with Type 1 Diabetes. Diabetes Technol. Ther. 2017, 19, 155–163. [Google Scholar] [CrossRef]
- Gross, T.M.; Bode, B.W.; Einhorn, D.; Kayne, D.M.; Reed, J.H.; White, N.H.; Mastrototaro, J.J. Performance evaluation of the MiniMed® continuous glucose monitoring system during patient home use. Diabetes Technol. Ther. 2000, 2, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Sinha, M.; McKeon, K.M.; Parker, S.; Goergen, L.G.; Zheng, H.; El-Khatib, F.H.; Russell, S.J. A Comparison of Time Delay in Three Continuous Glucose Monitors for Adolescents and Adults. J. Diabetes Sci. Technol. 2017, 11, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Higgins JPT, G.S. Cochrane Handbook for Systematic Reviews of Interventions; Wiley Blackwell: Hoboken, NJ, USA, 2019. [Google Scholar]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szadkowska, A.; Gawrecki, A.; Michalak, A.; Zozulinska-Ziokiewicz, D.; Fendler, W.; Młynarski, W. Flash Glucose Measurements in Children with Type 1 Diabetes in Real-Life Settings: To Trust or Not to Trust? Diabetes Technol. Ther. 2018, 20, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Huyett, L.M.; Dassau, E.; Zisser, H.C.; Doyle, F.J. The impact of glucose sensing dynamics on the closed-loop artificial pancreas. In Proceedings of the 2015 American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 5116–5121. [Google Scholar] [CrossRef]
- Adolfsson, P.; Örnhagen, H.; Jendle, J. Accuracy and reliability of continuous glucose monitoring in individuals with type 1 diabetes during recreational diving. Diabetes Technol. Ther. 2009, 11, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Riddell, M.C.; Pooni, R.; Yavelberg, L.; Li, Z.; Kollman, C.; Brown, R.E.; Li, A.; Aronson, R. Reproducibility in the cardiometabolic responses to high-intensity interval exercise in adults with type 1 diabetes. Diabetes Res. Clin. Pract. 2019, 148. [Google Scholar] [CrossRef]
- Ekhlaspour, L.; Mondesir, D.; Lautsch, N.; Balliro, C.; Hillard, M.; Magyar, K.; Radocchia, L.G.; Esmaeili, A.; Sinha, M.; Russell, S.J. Comparative Accuracy of 17 Point-of-Care Glucose Meters. J. Diabetes Sci. Technol. 2017, 11, 558–566. [Google Scholar] [CrossRef]
- Danne, T.; Nimri, R.; Battelino, T.; Bergenstal, R.M.; Close, K.L.; DeVries, J.H.; Garg, S.; Heinemann, L.; Hirsch, I.; Amiel, S.A.; et al. International consensus on use of continuous glucose monitoring. Diabetes Care 2017, 40, 1631–1640. [Google Scholar] [CrossRef] [Green Version]
- Reiterer, F.; Polterauer, P.; Schoemaker, M.; Schmelzeisen-Redecker, G.; Freckmann, G.; Heinemann, L.; Del Re, L. Significance and Reliability of MARD for the Accuracy of CGM Systems. J. Diabetes Sci. Technol. 2017, 11, 59–67. [Google Scholar] [CrossRef] [Green Version]
Source | Year | Patients | Exercise Samples | Exercise | Sensor Used | MARD Rest (%) | MARD Exercise (%) | Reference | |
---|---|---|---|---|---|---|---|---|---|
Iscoe et al. [7] | 2006 | 5 | – | Cycling | Guardian Real-Time | – | – | – | SMBG |
Fayolle et al. [22] | 2006 | 9 | – | Cycling | GlucoDay | – | – | – | GS |
Adolfsson et al. [23] | 2008 | 12 | – | Scuba diving | CGMS | – | – | – | GS |
Riddell et al. [24] | 2011 | 25 | – | Sport Camps | Guardian Real-Time | – | – | – | SMBG |
Adolfsson et al. [4] | 2011 | 18 | 1135 | Soccer | CGMS | *18 | 24 (a) | 6 | SMBG |
20 | Skiing | 27 (b) | 9 | ||||||
21 | Golf | 19 (c) | 1 | ||||||
Herrington et al. [5] | 2012 | 12 | – | Cycling | Dexcom Seven Plus | – | – | – | GS |
Yardley et al. [25] | 2012 | 12 | – | Aerobic and resistance | Medtronic Gold CGM | – | – | – | GS |
Kumareswaran et al. [2] | 2012 | 12 | – | Walking | Freestyle Navigator | – | – | – | GS |
Kumareswaran et al. [26] | 2013 | 10 | – | Walking | Freestyle Navigator | – | – | – | GS |
Yardley et al. [27] | 2013 | 12 | – | Aerobic and resistance | Medtronic Gold CGM | – | – | – | GS |
Radermecker et al. [28] | 2013 | 10 | – | Cycling | Guardian Real-Time | – | – | – | GS |
Yousef et al. [29] | 2014 | 12 | – | Skydiving simulation | iPro2 | – | – | – | SMBG |
Campbell et al. [30] | 2015 | 9 | – | Running and simulate game-play activities | Medtronic Gold CGM | – | – | – | GS |
Moser et al. [31] | 2015 | 8 | – | Aerobic | Guardian Real-Time | – | – | – | SMBG |
van Dijk et al. [32] | 2016 | 10 | – | Walking | iPro2 | – | – | – | SMBG |
Moser et al. [33] | 2016 | 7 | 489 | Continuous cyclometer HIIE cyclometer | Guardian Real-Time | *15.8 | 18.76 (1.a) 19.63 (1.b) | 2.96 3.83 | SMBG |
Bally et al. [34] | 2016 | 10 | 108 100 | Intermittent cycling Continuous cycling | Dexcom G4 | *13 | 13.3 (a) 13.6 (b) | 0.3 0.6 | GS |
Taleb et al. [35] | 2016 | 17 | 431 425 | Intermittent | Dexcom G4 Platinum Paradigm Veo (Enlite2) | 13.77 12.38 | 22.53 (a) 20.44 (b) | 8.76 8.06 | GS |
Moser et al. [33] | 2016 | 7 | – | Cycling | Guardian Real-Time | – | – | – | GS |
McAuley et al. [36] | 2016 | 14 | – | Cycling | Paradigm Veo (Enlite2) | – | – | – | GS |
Aberer et al. [37] | 2017 | 12 | 462 540 502 | Cycling | FreeStyle Libre Dexcom G4 Platinum MiniMed 640G (Enlite2) | *16.7 *13 *14.2 | 8.7 (a) 15.7 (b) 19.4 (c) | −8 2.7 5.2 | GS |
Gawrecki et al. [38] | 2017 | 29 | – | Walking | Guardian Real-Time | – | – | – | SMBG |
Jayawardene et al. [39] | 2017 | 12 | 48 48 | HIIE cycling Cycling | MiniMed 670G (Sensor3) | *10.3 | 10.5 (a) 9.9 (b) | 0.2 0.4 | GS |
Zaharieva et al. [40] | 2017 | 12 | 96 96 | Aerobic Resistance | iPro2 | 9.86 8.15 | 12 (1.a) 6.96 (1.b) | 2.14 −1.19 | SMBG |
Reddy et al. [41] | 2017 | 10 | – | Aerobic and resistance | Dexcom G4 Platinum or G5 | – | – | – | SMBG |
Quirós et al. [42] | 2018 | 5 | – | Aerobic and resistance | Paradigm Veo (Enlite2) | – | – | – | GS |
Larose et al. [43] | 2018 | 22 | – | Cycling | Dexcom G4 Platinum | – | – | – | SMBG |
Giani et al. [6] | 2018 | 17 | 136 136 | Intermittent | FreeStyle Libre | 16.6 | 12.5 (a) 15.4 (b) | −4.1 −1.2 | GS SMBG |
Aronson et al. [44] | 2018 | 17 | – | HIIE | Dexcom G4 Platinum | – | – | – | GS |
Reddy et al. [45] | 2018 | 10 | – | Aerobic | Dexcom G4 Platinum | – | – | – | SMBG |
Biagi et al. [46] | 2018 | 6 | 108 86 | Aerobic Resistance | Paradigm Veo (Enlite2) | 9.5 15.5 | 16.5 (a) 16.8 (b) | 7 1.3 | GS |
Abdulrahman et al. [47] | 2018 | 4 | – | Rugby training | Paradigm Veo (Enlite2) | – | – | – | SMBG |
Castle et al. [48] | 2018 | 20 | – | Aerobic | Dexcom G5 | – | – | – | SMBG |
Moser et al. [49] | 2018 | 10 | 228 140 | Aerobic | iPro2 MiniMed 640G (Enlite2) | 16.4 17.9 | 27 (2.a) 23.1(2.b) | 10.6 5.2 | SMBG |
Steineck et al. [50] | 2019 | 13 | 2660 | Cycling | Dexcom G4 Platinum | *13 | 16.5 (a) 15.2 (b) | 3.5 2.2 | GS |
Burckhardt et al. [51] | 2019 | 14 | – | Aerobic | Dexcom G5 | – | – | – | SMBG |
Forlenza et al. [52] | 2019 | 12 | – | Aerobic | Dexcom G4 (505) | – | – | – | SMBG |
Larose et al. [53] | 2019 | 22 | – | Aerobic | Dexcom G4 Platinum | – | – | – | SMBG |
Li et al. [3] | 2019 | 17 | 192 | HIIE | Dexcom G4 Platinum | 10.4 | 17.8 | 7.4 | GS |
Zaharieva et al. [54] | 2019 | 17 | 204 | Aerobic | Dexcom G4(505) or G5 | 8 | 13 (2.a) | 5 | SMBG |
Moser et al. [55] | 2019 | 10 | 845 | Cycling | Freestyle Libre | 13.7 | 22 (3.a) | 8.3 | SMBG |
Zaharieva et al. [56] | 2019 | 12 | – | Resistance | iPro2 | – | – | – | SMBG |
Eshghi et al. [57] | 2019 | 12 | – | Resistance | iPro2 | – | – | – | SMBG |
Steineck et al. [58] | 2019 | 14 | – | Cycling | Dexcom G4 Platinum | – | – | – | SMBG |
Gawrecki et al. [59] | 2019 | 16 | – | Football | Guardian Connect | – | – | – | SMBG |
Lee et al. [60] | 2019 | 12 | – | Cycling | FreeStyle Libre Pro | – | – | – | SMBG |
Moser et al. [61] | 2019 | 10 | – | Cycling | FreeStyle Libre | – | – | – | SMBG |
Scott et al. [62] | 2019 | 14 | – | Cycling | Dexcom G4 Platinum | – | – | – | SMBG |
Moser et al. [63] | 2019 | 14 | 470 | Cycling | FreeStyle Libre | *16.7 | 29.8 (4.a) | 13.1 | SMBG |
Scott et al. [64] | 2019 | 14 | – | HIIE and MICT | Dexcom G4 Platinum | – | – | – | SMBG |
McCarthy et al. [65] | 2020 | 16 | – | Cycling | Dexcom G6 | – | – | – | Unknown |
Brockman et al. [66] | 2020 | 23 | – | Resistance | Medtronic Gold CGM iPro2 | – – | – – | – | GS |
Fokkert et al. [67] | 2020 | 14 | 414 311 | Mountain biking | Guardian Connect FreeStyle Libre | *10.9 *16.7 | 29 (a) 22 (b) | 18.1 5.3 | SMBG |
Guillot et al. [68] | 2020 | 24 | 96 96 80 | Aerobic Resistance HIIE | Dexcom G6 | 9.5 9.1 16.8 | 13.3(a) 13 (b) 12.4 (c) | 3.8 3.9 −4.4 | SMBG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz Fabra, E.; Díez, J.-L.; Bondia, J.; Laguna Sanz, A.J. A Comprehensive Review of Continuous Glucose Monitoring Accuracy during Exercise Periods. Sensors 2021, 21, 479. https://doi.org/10.3390/s21020479
Muñoz Fabra E, Díez J-L, Bondia J, Laguna Sanz AJ. A Comprehensive Review of Continuous Glucose Monitoring Accuracy during Exercise Periods. Sensors. 2021; 21(2):479. https://doi.org/10.3390/s21020479
Chicago/Turabian StyleMuñoz Fabra, Elena, José-Luis Díez, Jorge Bondia, and Alejandro José Laguna Sanz. 2021. "A Comprehensive Review of Continuous Glucose Monitoring Accuracy during Exercise Periods" Sensors 21, no. 2: 479. https://doi.org/10.3390/s21020479
APA StyleMuñoz Fabra, E., Díez, J. -L., Bondia, J., & Laguna Sanz, A. J. (2021). A Comprehensive Review of Continuous Glucose Monitoring Accuracy during Exercise Periods. Sensors, 21(2), 479. https://doi.org/10.3390/s21020479