Wavelength Dependent Graphene Oxide-Based Optical Microfiber Sensor for Ammonia Gas
Abstract
:1. Introduction
2. Experimental Details
2.1. Sensor Fabrication
2.2. Material Characterization
2.3. Experimental Setup
3. Results and Discussion
3.1. Characterization of Graphene Oxide
3.2. Gas Sensing Performance
3.3. Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibrahim, S.A.; Rahman, N.A.; Bakar, A.M.H.; Girei, S.H.; Yaacob, M.H.; Ahmad, H.; Mahdi, M.A. Room temperature ammonia sensing using tapered multimode fiber coated with polyaniline nanofibers. Opt. Express 2015, 23, 2837–2845. [Google Scholar] [CrossRef] [PubMed]
- Kanaparthi, S.; Singh, G.S. Highly sensitive and ultra-fast responsive ammonia gas sensor based on 2D ZnO nanoflakes. Mater. Sci. Energy Technol. 2020, 3, 91–96. [Google Scholar] [CrossRef]
- Timmer, B.; Olthuis, W.; Van Den Berg, A. Ammonia sensors and their applications—A review. Sens. Actuators B Chem. 2005, 107, 666–677. [Google Scholar] [CrossRef]
- Van, P.T.H.; Dai, D.D.; Van Duy, N.; Hoa, N.D.; Van Hieu, N. Ultrasensitive NO2 gas sensors using tungsten oxide nanowires with multiple junctions self-assembled on discrete catalyst islands via on-chip fabrication. Sens. Actuators B Chem. 2016, 227, 198–203. [Google Scholar] [CrossRef]
- Fidanboylu, K.A.; Efendioglu, H.S. Fiber optic sensors and their applications. In Proceedings of the 5th International Advanced Technologies Symposium (IATS’09), Karabuk, Turkey, 13–15 May 2009; pp. 1–6. [Google Scholar]
- Grattan, K.T.G.; Meggit, B.T. Optical Fiber Sensor Technology; Springer Science: Berlin, Germany, 1999; ISBN 0936659491. [Google Scholar]
- Cao, W.; Duan, Y. Optical fiber-based evanescent ammonia sensor. Sens. Actuators B Chem. 2005, 110, 252–259. [Google Scholar] [CrossRef]
- Mishra, S.K.; Bhardwaj, S.; Gupta, B.D. Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas. IEEE Sens. J. 2015, 15, 1235–1239. [Google Scholar] [CrossRef]
- Wang, Q.; Fu, H.; Ding, J.; Yang, C.; Wang, S. Sensitivity enhanced microfiber interferometer ammonia gas sensor by using WO3 nanorods coatings. Opt. Laser Technol. 2020, 125, 106036. [Google Scholar] [CrossRef]
- Talataisong, W.; Ismaeel, R.; Brambilla, G. A review of microfiber-based temperature sensors. Sensors 2018, 18, 461. [Google Scholar] [CrossRef] [Green Version]
- Brambilla, G. Optical fibre nanotaper sensors. Opt. Fiber Technol. 2010, 16, 331–342. [Google Scholar] [CrossRef]
- Korposh, S.; James, S.W.; Lee, S.W.; Tatam, R.P. Tapered optical fibre sensors: Current trends and future perspectives. Sensors 2019, 19, 2294. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.; Ho, H.L.; Cao, Y.C.; Ju, J.; Qi, L.F. Gas detection with micro- and nano-engineered optical fibers. Opt. Fiber Technol. 2013, 19, 741–759. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; You, S.; Yu, C.; Dong, B.; Yu, C.; Xu, W.; Zhang, N. Simultaneous measurement of refractive index, strain and temperature using a tapered structure based on SMF. Opt. Commun. 2017, 410, 70–74. [Google Scholar]
- Tan, Y.; Sun, L.P.; Jin, L.; Li, J.; Guan, B.O. Temperature-insensitive humidity sensor based on a silica fiber taper interferometer. IEEE Photonics Technol. Lett. 2013, 25, 2201–2204. [Google Scholar] [CrossRef]
- Yu, C.; Wu, Y.; Liu, X.; Fu, F.; Gong, Y.; Rao, Y. Miniature fiber-optic NH3 gas sensor based on Pt nanoparticle-incorporated graphene oxide. Sens. Actuators B Chem. 2017, 244, 107–113. [Google Scholar] [CrossRef]
- Irigoyen, M.; Sánchez-Martin, J.A.; Bernabeu, E.; Zamora, A. Tapered optical fiber sensor for chemical pollutants detection in seawater. Meas. Sci. Technol. 2017, 28, 045802. [Google Scholar] [CrossRef]
- Hernaez, M.; Zamarreño, C.R.; Melendi-Espina, S.; Bird, L.R.; Mayes, A.G.; Arregui, F.J. Optical fibre sensors using graphene-based materials: A review. Sensors 2017, 17, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Wu, Y.; Liu, X.-L.; Yao, B.-C.; Fu, F.; Gong, Y.; Rao, Y.-J.; Chen, Y.-F. Graphene oxide deposited microfiber knot resonator for gas sensing. Opt. Mater. Express 2016, 6, 727. [Google Scholar] [CrossRef]
- Shabaneh, A.A.; Girei, S.H.; Arasu, P.T.; Rahman, W.B.W.A.; Bakar, A.A.A.; Sadek, A.Z.; Lim, H.N.; Huang, N.M.; Yaacob, M.H. Reflectance response of tapered optical fiber coated with graphene oxide nanostructured thin film for aqueous ethanol sensing. Opt. Commun. 2014, 331, 320–324. [Google Scholar] [CrossRef]
- Kagami, M. Visible optical fiber communication. RD Rev. Toyota CRDL 2005, 40, 1–6. [Google Scholar]
- Dadabayev, R.; Malka, D. A visible light RGB wavelength demultiplexer based on polycarbonate multicore polymer optical fiber. Opt. Laser Technol. 2019, 116, 239–245. [Google Scholar] [CrossRef]
- Huang, N.M.; Lim, H.N.; Chia, C.H.; Yarmo, M.A.; Muhamad, M.R. Simple room-temperature preparation of high-yield large-area graphene oxide. Int. J. Nanomed. 2011, 6, 3443–3448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.W.; Mao, J.J.; Liu, P.D.; Wei, X.W. Fabrication of metal-graphene hybrid materials by electroless deposition. Carbon N. Y. 2011, 49, 477–483. [Google Scholar] [CrossRef]
- Khalaf, A.L.; Mohamad, F.S.; Rahman, N.A.; Lim, H.N.; Paiman, S.; Yusof, N.A.; Mahdi, M.A.; Yaacob, M.H. Room temperature ammonia sensor using side-polished optical fiber coated with graphene/polyaniline nanocomposite. Opt. Mater. Express 2017, 7, 1858. [Google Scholar] [CrossRef]
- Tabassum, S.; Dong, L.; Kumar, R. Determination of dynamic variations in the optical properties of graphene oxide in response to gas exposure based on thin-film interference. Opt. Express 2018, 26, 6331. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; El-Sherif, M.A. Fiber-optic chemical sensor using polyaniline as modified cladding material. IEEE Sens. J. 2003, 3, 5–12. [Google Scholar] [CrossRef]
- Alankar, S.; Gupt, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–55. [Google Scholar]
- Mishra, S.K.; Tripathi, S.N.; Choudhary, V.; Gupta, B.D. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuators B Chem. 2014, 199, 190–200. [Google Scholar] [CrossRef]
- Aubrecht, J.; Kalvoda, L. Development of ammonia gas sensor using optimized organometallic reagent. J. Sens. 2016, 2016, 8425758. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Ahmad, M.Z.; Anas, S.B.A.; Yaacob, M.H.; Mahdi, M.A.; Abu Bakar, M.H.; Rahman, N.A. Sensing performance of modified single mode optical fiber coated with nanomaterials-based ammonia sensors operated in the C-band. IEEE Access 2018, 7, 5467–5476. [Google Scholar] [CrossRef]
- Peng, Y.; Li, J. Ammonia adsorption on graphene and graphene oxide: A first-principles study. Front. Environ. Sci. Eng. 2013, 7, 403–411. [Google Scholar] [CrossRef]
- Gadipelli, S.; Guo, Z.X. Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 2015, 69, 1–60. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Kaur, A. Enhanced and selective ammonia sensing of reduced graphene oxide based chemo resistive sensor at room temperature. AIP Conf. Proc. 2016, 1728. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girei, S.H.; Alkhabet, M.M.; Kamil, Y.M.; Lim, H.N.; Mahdi, M.A.; Yaacob, M.H. Wavelength Dependent Graphene Oxide-Based Optical Microfiber Sensor for Ammonia Gas. Sensors 2021, 21, 556. https://doi.org/10.3390/s21020556
Girei SH, Alkhabet MM, Kamil YM, Lim HN, Mahdi MA, Yaacob MH. Wavelength Dependent Graphene Oxide-Based Optical Microfiber Sensor for Ammonia Gas. Sensors. 2021; 21(2):556. https://doi.org/10.3390/s21020556
Chicago/Turabian StyleGirei, Saad Hayatu, Mohammed Majeed Alkhabet, Yasmin Mustapha Kamil, Hong Ngee Lim, Mohd Adzir Mahdi, and Mohd Hanif Yaacob. 2021. "Wavelength Dependent Graphene Oxide-Based Optical Microfiber Sensor for Ammonia Gas" Sensors 21, no. 2: 556. https://doi.org/10.3390/s21020556
APA StyleGirei, S. H., Alkhabet, M. M., Kamil, Y. M., Lim, H. N., Mahdi, M. A., & Yaacob, M. H. (2021). Wavelength Dependent Graphene Oxide-Based Optical Microfiber Sensor for Ammonia Gas. Sensors, 21(2), 556. https://doi.org/10.3390/s21020556