Development of a Human-Display Interface with Vibrotactile Feedback for Real-World Assistive Applications
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Participants
3.2. Experimental Setup
3.3. Preliminary Experiment
3.4. Experimental Protocols
3.5. Detection Threshold Estimation
4. Results and Discussion
4.1. Detection Threshold
4.2. Data Analysis
4.2.1. Temporal Summation
4.2.2. Contact Area and Pressure
4.2.3. Noise Vibration of Driving a Car
4.2.4. Vibration Direction of Haptic Stimulation
4.3. Implementation of Haptic Feedback System
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rick, J. Performance optimizations of virtual keyboards for stroke-based text entry on a touch-based tabletop. In Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, New York, NY, USA, 3–6 October 2010; pp. 77–86. [Google Scholar]
- Costes, A.; Danieau, F.; Argelaguet, F.; Guillotel, P.; Lécuyer, A. Towards Haptic Images: A Survey on Touchscreen-Based Surface Haptics. IEEE Trans. Haptics 2020, 13, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Basdogan, C.; Giraud, F.; Levesque, V.; Choi, S. A Review of Surface Haptics: Enabling Tactile Effects on Touch Surfaces. IEEE Trans. Haptics 2020, 13, 450–470. [Google Scholar] [CrossRef] [PubMed]
- Oey, H.; Mellert, V. Vibration thresholds and equal vibration levels at the human fingertip and palm. In Proceedings of the 5th International Congress on Acoustics, Kyoto, Japan, 4–9 April 2004; pp. 1–4. [Google Scholar]
- Klatzky, R.L.; Nayak, A.; Stephen, I.; Dijour, D.; Tan, H.Z. Detection and Identification of Pattern Information on an Electrostatic Friction Display. IEEE Trans. Haptics 2019, 12, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Vezzoli, E.; Messaoud, W.B.; Amberg, M.; Giraud, F.; Lemaire-Semail, B.; Bueno, M.A. Physical and perceptual independence of ultrasonic vibration and electrovibration for friction modulation. IEEE Trans. Haptics 2015, 8, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Kuchenbecker, K.J. Vibrotactile display: Perception, technology, and applications. Proc. IEEE 2012, 101, 2093–2104. [Google Scholar] [CrossRef]
- Ozioko, O.; Navaraj, W.; Hersh, M.; Dahiya, R. Tacsac: A Wearable Haptic Device with Capacitive Touch-Sensing Capability for Tactile Display. Sensors 2020, 20, 4780. [Google Scholar] [CrossRef]
- Banter, B. Touch screens and touch surfaces are enriched by haptic force-feedback. Inf. Display 2010, 26, 26–30. [Google Scholar] [CrossRef]
- Pitts, M.J.; Burnett, G.; Skrypchuk, L.; Wellings, T.; Attridge, A.; Williams, M.A. Visual–haptic feedback interaction in automotive touchscreens. Displays 2012, 33, 7–16. [Google Scholar] [CrossRef]
- Wu, F.G.; Lin, H.; You, M. Direct-touch vs. mouse input for navigation modes of the web map. Displays 2011, 32, 261–267. [Google Scholar] [CrossRef]
- Poupyrev, I.; Maruyama, S.; Rekimoto, J. Ambient touch: Designing tactile interfaces for handheld devices. In Proceedings of the 15th Annual ACM Symposium on User Interface Software and Technology, Paris, Fance, 27–30 October 2002; pp. 51–60. [Google Scholar]
- Brewster, S.; Chohan, F.; Brown, L. Tactile feedback for mobile interactions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 27 April–3 May 2007; pp. 159–162. [Google Scholar]
- Lee, J.H.; Spence, C. Assessing the benefits of multimodal feedback on dual-task performance under demanding conditions. People Comput. XXII Cult. Creat. Interact. 2008, 22, 185–192. [Google Scholar]
- Li, T.; Wang, D.; Peng, C.; Yu, C.; Zhang, Y. Speed-accuracy tradeoff of fingertip force control with visual/audio/haptic feedback. Int. J. Hum. Comput. Stud. 2018, 110, 33–44. [Google Scholar] [CrossRef]
- Ng, A.; Brewster, S.A. Investigating pressure input and haptic feedback for in-car touchscreens and touch surfaces. In Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Ann Arbor, MI, USA, 24–26 October 2016; pp. 121–128. [Google Scholar]
- Ng, A.; Brewster, S. An Evaluation of Touch and Pressure-Based Scrolling and Haptic Feedback for In-Car Touchscreens. In Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Oldenburg, Germany, 24–27 September 2017; pp. 11–20. [Google Scholar]
- Vo, D.B.; Brewster, S. Investigating the effect of tactile input and output locations for drivers’ hands on in-car tasks performance. In Proceedings of the 12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Virtual Conference. 21–22 September 2020; pp. 1–8. [Google Scholar]
- Tchakoute, L.D.C.; Menelas, B.J. Perception of a Haptic Stimulus Presented Under the Foot Under Workload. Sensors 2020, 20, 2421. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.L.; Prewett, M.S.; Gray, A.A.; Yang, L.; Stilson, F.R.; Coovert, M.D.; Elliot, L.R.; Redden, E. Comparing the effects of visual-auditory and visual-tactile feedback on user performance: A meta-analysis. In Proceedings of the 8th International Conference on Multimodal Interfaces, Banff, AB, Canada, 2–4 November 2006; pp. 108–117. [Google Scholar]
- Klauer, S.G.; Dingus, T.A.; Neale, V.L.; Sudweeks, J.D.; Ramsey, D.J. The Impact of Driver Inattention on Near-Crash/Crash Risk: An Analysis Using the 100-Car Naturalistic Driving Study Data; Technical Report; National Highway Traffic Safety Administration (NHTSA), Office of Human-Vehicle Performance Research: Washington DC, USA, 2006.
- Morioka, M.; Griffin, M.J. Thresholds for the perception of hand-transmitted vibration: Dependence on contact area and contact location. Somatosens. Mot. Res. 2005, 22, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Israr, A.; Choi, S.; Tan, H.Z. Detection threshold and mechanical impedance of the hand in a pen-hold posture. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 472–477. [Google Scholar]
- Israr, A.; Choi, S.; Tan, H.Z. Mechanical impedance of the hand holding a spherical tool at threshold and suprathreshold stimulation levels. In Proceedings of the 2nd Joint EuroHaptics Conference Symposium Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07), Tsukaba, Japan, 22–24 March 2007; pp. 56–60. [Google Scholar]
- Park, J.; Han, I.; Lee, W. Effect of haptic feedback on the perceived size of a virtual object. IEEE Access 2019, 7, 83673–83681. [Google Scholar] [CrossRef]
- Israr, A.; Tan, H.Z.; Reed, C.M. Frequency and amplitude discrimination along the kinesthetic-cutaneous continuum in the presence of masking stimuli. J. Acoust. Soc. Am. 2006, 120, 2789–2800. [Google Scholar] [CrossRef]
- Zwislocki, J. Theory of temporal auditory summation. J. Acoust. Soc. Am. 1960, 32, 1046–1060. [Google Scholar] [CrossRef]
- Verrillo, R. Temporal summation in vibrotactile sensitivity. J. Acoust. Soc. Am. 1965, 37, 843–846. [Google Scholar] [CrossRef]
- Norman, D.A. Cognitive engineering and education. In Problem Solving and Education: Issues in Teaching and Research; Lawrence Erlbaum: Mahwah, NJ, USA, 1980; pp. 97–107. [Google Scholar]
- David, N.; Skoruppa, S.; Gulberti, A.; Schultz, J.; Engel, A.K. The sense of agency is more sensitive to manipulations of outcome than movement-related feedback irrespective of sensory modality. PLoS ONE 2016, 11, e0161156. [Google Scholar] [CrossRef]
- Dangxiao, W.; Yuan, G.; Shiyi, L.; Zhang, Y.; Weiliang, X.; Jing, X. Haptic display for virtual reality: Progress and challenges. VRIH 2019, 1, 136–162. [Google Scholar] [CrossRef] [Green Version]
- Fukumoto, M.; Sugimura, T. Active click: Tactile feedback for touch panels. In Proceedings of the CHI’01 Extended Abstracts on Human Factors in Computing Systems, Seattle, WA, USA, 31 March–5 April 2001; pp. 121–122. [Google Scholar]
- Nashel, A.; Razzaque, S. Tactile virtual buttons for mobile devices. In Proceedings of the CHI’03 Extended Abstracts on Human Factors in Computing Systems, Fort Lauderdale, FL, USA, 5–10 April 2003; pp. 854–855. [Google Scholar]
- Koskinen, E. Optimizing tactile feedback for virtual buttons in mobile devices. Master’s Thesis, Helsinki University of Technology, Faculty of Electronics, Communications and Automation, Helsinki, Finland, 2008. [Google Scholar]
- Koskinen, E.; Kaaresoja, T.; Laitinen, P. Feel-good touch: Finding the most pleasant tactile feedback for a mobile touch screen button. In Proceedings of the 10th International Conference on Multimodal Interfaces, Chania Crete, Greece, 20–22 October 2008; pp. 297–304. [Google Scholar]
- Chen, H.Y.; Park, J.; Dai, S.; Tan, H.Z. Design and evaluation of identifiable key-click signals for mobile devices. IEEE Trans. Haptics 2011, 4, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Lee, G. Haptic feedback design for a virtual button along force-displacement curves. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, Andrews Scotland, UK, 8–11 October 2013; pp. 91–96. [Google Scholar]
- Silva, B.; Costelha, H.; Bento, L.C.; Barata, M.; Assuncao, P. User-Experience with Haptic Feedback Technologies and Text Input in Interactive Multimedia Devices. Sensors 2020, 20, 5316. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.; Imhoff, T.T.; Grigg, P. Noise-mediated enhancements and decrements in human tactile sensation. Phys. Rev. E 1997, 56, 923. [Google Scholar] [CrossRef] [Green Version]
- Kuchenbecker, K.J.; Fiene, J.; Niemeyer, G. Improving contact realism through event-based haptic feedback. IEEE Trans. Vis. Comput. Graph. 2006, 12, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Breitschaft, S.J.; Clarke, S.; Carbon, C.C. A theoretical framework of haptic processing in automotive user interfaces and its implications on design and engineering. Front. Psychol. 2019, 10, 1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Union. Directive 2002/44/EC of the European Parliament and the Council of 25 June 2002 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (vibration) (sixteenth individual Directive within the meaning of Article 16 (1) of Directive 89/391/EEC). Directive, E.; Provisions, G. OJEC 2002, 117, 6–7. [Google Scholar]
- Johanning, E.; Fischer, S.; Christ, E.; Göres, B.; Landsbergis, P. Whole-body vibration exposure study in US railroad locomotives—An ergonomic risk assessment. AIHA J. 2002, 63, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Levitt, H. Transformed up-down methods in psychoacoustics. J. Acoust. Soc. Am. 1971, 49, 467–477. [Google Scholar] [CrossRef]
- Leek, M.R. Adaptive procedures in psychophysical research. Percept. Psychophys. 2001, 63, 1279–1292. [Google Scholar] [CrossRef] [Green Version]
- Papetti, S.; Järveläinen, H.; Giordano, B.L.; Schiesser, S.; Fröhlich, M. Vibrotactile sensitivity in active touch: Effect of pressing force. IEEE Trans. Haptics 2016, 10, 113–122. [Google Scholar] [CrossRef]
- Brisben, A.; Hsiao, S.; Johnson, K. Detection of vibration transmitted through an object grasped in the hand. J. Neurophysiol. 1999, 81, 1548–1558. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.; Hwang, W. Vibration perception and excitatory direction for haptic devices. J. Intell. Manuf. 2011, 22, 17–27. [Google Scholar] [CrossRef]
- Park, K.H.; Lee, S.W. Movement intention decoding based on deep learning for multiuser myoelectric interfaces. In Proceedings of the 2016 4th International Winter Conference on Brain-Computer Interface (BCI), Yongpyong, Korea, 22–24 February 2016; pp. 1–2. [Google Scholar]
- Chen, Y.; Atnafu, A.D.; Schlattner, I.; Weldtsadik, W.T.; Roh, M.C.; Kim, H.J.; Lee, S.W.; Blankertz, B.; Fazli, S. A high-security EEG-based login system with RSVP stimuli and dry electrodes. IEEE Trans. Inf. Foren. Secur. 2016, 11, 2635–2647. [Google Scholar] [CrossRef]
- Lee, M.H.; Williamson, J.; Won, D.O.; Fazli, S.; Lee, S.W. A high performance spelling system based on EEG-EOG signals with visual feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1443–1459. [Google Scholar] [CrossRef] [PubMed]
- Won, D.O.; Hwang, H.J.; Kim, D.M.; Müller, K.R.; Lee, S.W. Motion-based rapid serial visual presentation for gaze-independent brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 26, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.T.; Suk, H.I.; Lee, S.W. Commanding a brain-controlled wheelchair using steady-state somatosensory evoked potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 26, 654–665. [Google Scholar] [CrossRef]
- Jeong, J.H.; Shim, K.H.; Kim, D.J.; Lee, S.W. Brain-controlled robotic arm system based on multi-directional CNN-BiLSTM network using EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1226–1238. [Google Scholar] [CrossRef]
Actuators | Voice Coil Motor | Eccentric Rotating Mass Motor | Linear Resonant Actuator | Piezoelectric Actuator | Electrostatic Tactile Actuator | |
---|---|---|---|---|---|---|
Characteristics | ||||||
Response time | High | Low | High | High | High | |
Bandwidth | High | Low | Low | High | High | |
Displacement output | High | High | Medium | Medium | Low | |
Power consumption | Low | Low | Low | High | High | |
Mechanical simplicity | Medium | Low | High | Medium | Medium |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Jeong, J.-H.; Cho, J.-H.; Kim, S.; Kang, J.; Ryu, J.; Lee, S.-W. Development of a Human-Display Interface with Vibrotactile Feedback for Real-World Assistive Applications. Sensors 2021, 21, 592. https://doi.org/10.3390/s21020592
Kim K, Jeong J-H, Cho J-H, Kim S, Kang J, Ryu J, Lee S-W. Development of a Human-Display Interface with Vibrotactile Feedback for Real-World Assistive Applications. Sensors. 2021; 21(2):592. https://doi.org/10.3390/s21020592
Chicago/Turabian StyleKim, Kiduk, Ji-Hoon Jeong, Jeong-Hyun Cho, Sunghyun Kim, Jeonggoo Kang, Jeha Ryu, and Seong-Whan Lee. 2021. "Development of a Human-Display Interface with Vibrotactile Feedback for Real-World Assistive Applications" Sensors 21, no. 2: 592. https://doi.org/10.3390/s21020592
APA StyleKim, K., Jeong, J. -H., Cho, J. -H., Kim, S., Kang, J., Ryu, J., & Lee, S. -W. (2021). Development of a Human-Display Interface with Vibrotactile Feedback for Real-World Assistive Applications. Sensors, 21(2), 592. https://doi.org/10.3390/s21020592