Nanomaterial-Integrated Cellulose Platforms for Optical Sensing of Trace Metals and Anionic Species in the Environment
Abstract
:1. Introduction
2. Detection of Metal Ions and Anionic Species by Paper-Based Analytical Devices along with Chromogenic/Fluorogenic Reagents
3. Detection of Trace Metals and Anions Using Paper-Based Analytical Devices and Nanostructured Receptors
3.1. Plasmonic Nanoparticles Immobilized onto Cellulose Substrates
3.2. Fluorescent Nanoparticles Immobilized onto Cellulose Substrates
3.2.1. Quantum Dots
3.2.2. Carbon Quantum Dots and Graphene Quantum Dots
3.2.3. Metal Nanoclusters
4. Strategies for Enhancing Sensitivity of Paper-Based Analytical Devices
4.1. Optimization of PAD and MicroPAD Design
4.2. Preconcentration Strategies in Paper-Based Analytical Devices
4.2.1. Repetitive Deposition of Sample onto the Cellulose Substrate
4.2.2. Preconcentration by Solid-Phase Extraction
4.2.3. Preconcentration by Thin-Film Microextraction
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AgNPs | silver nanoparticles |
AuNCs | gold nanoclusters |
AuNPs | gold nanoparticles |
AuNRs | gold nanorods |
BODIPY | 4,4-difluoro-4-bora-3a,4a-diaza-sindacene |
BSA | bovine serum albumin |
CDs | carbon dots |
CQDs | carbon quantum dots |
CTAB | cetyltrimethylammonium bromide |
CuNCs | copper nanoclusters |
CURNs | curcumin nanoparticles |
DNA | deoxyribonucleic acid |
EDTA | ethylenediaminetetraacetic acid |
EuD4TEA | europium tetrakis dibenzoylmethide triethyammonium |
FRET | Foster resonance energy transfer |
GC-MS | gas chromatography-mass spectrometry |
GMIN | molecularly imprinted nanoparticles coupled with graphene quantum dots |
GQD | graphene quantum dots |
HDTC | 2-hydroxyethyldithiocarbamate |
HS | headspace |
ICP-MS | inductively coupled plasma-mass spectrometry |
LOD | limit of detection |
LSPR | localized surface plasmon resonance |
NCs | nanoclusters |
NPs | nanoparticles |
NRs | nanorods |
PADs | paper-based assay devices |
microPADs | microfluidic paper-based devices |
PAR | 4-(2-pyridylazo) resorcinol |
PDMS | polydimethylxilosane |
PdNPs | palladium nanoparticles |
PtNPs | platinum nanoparticles |
QDs | quantum dots |
RSD | relative standard deviation |
RSNO | S-nitrosothiol |
SDME | single-drop microextraction |
SERS | surface-enhanced Raman scattering |
SH-CAT | superhydrofobic chemical-responsive adhesive tape |
SNAP | S-Nitroso-N-acetylpenicillamine |
SPE | solid-phase extraction |
SPME | solid-phase microextraction |
SPR | surface plasmon resonance |
STCP | silanization-titanium dioxide modified filter paper |
ssDNA | single strand DNA |
TAS | total analysis systems |
TA-DNS | thioctic acid-dansylhydrazine |
TBT | tributhyltin |
TFME | thin-film microextraction |
TICs | information and communication technologies |
TMB | 3,3,5,5-tetramethylbenzidine |
US EPA | United States Environmental Protection Agency |
WHO | World Health Organization |
References
- Pena-Pereira, F.; Bendicho, C.; Mutavdžić Pavlović, D.; Martin-Esteban, A.; Diaz-Alvarez, M.; Pan, Y.; Cooper, J.; Yang, Z.; Safarik, I.; Pospiskova, K.; et al. Miniaturized analytical methods for determination of environmental contaminants of emerging concern. A Review. Anal. Chim. Acta 2020, in press. [Google Scholar] [CrossRef]
- Pol, R.; Céspedes, F.; Gabriel, D.; Baeza, M. Microfluidic lab-on-a-chip platforms for environmental monitoring. Trends Anal. Chem. 2017, 95, 62–68. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Duarte, R.M.B.O.; Duarte, A.C. Immobilization strategies and analytical applications for metallic and metal-oxide nanomaterials on surfaces. Trends Anal. Chem. 2012, 40, 90–105. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 2010, 82, 3–10. [Google Scholar] [CrossRef]
- Borjesson, M.B.; Westman, G. Crystalline nanocellulose-Preparation, modification and properties. In Cellulose-Fundamental Aspects and Current Trends; Poletto, M., Ornaghi Junio, H.L., Eds.; IntechOpen: London, UK, 2015; pp. 159–191. ISBN 978-953-51-2229-6. [Google Scholar]
- Shaghaleh, H.; Xu, X.; Wang, S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers and cellulose derivatives. RSC Adv. 2018, 8, 825–842. [Google Scholar] [CrossRef] [Green Version]
- Jensen, W.B. Remembering qualitative analysis. Educ. Química 2017, 28, 217–224. [Google Scholar] [CrossRef]
- Bendicho, C.; Lavilla, I. Water analysis: Sewage. In Encyclopedia of Analytical Sciences, 3rd ed.; Worsfold, P., Townshend, A., Poole, C., Miró, M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 371–381. ISBN 9780081019849. [Google Scholar]
- USEPA, National Primary Drinking Water Regulations. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Inorganic (accessed on 3 December 2020).
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; 1st Addendum; World Health Organization: Geneva, Switzerland, 1993; Available online: https://www.who.int/publications/i/item/9789241550017 (accessed on 3 December 2020).
- Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. Eur. Communities 1998, 41, L330/32–54.
- López-Marzo, A.M.; Mercoçi, A. Paper-based sensors and assays: A success of the engineering design and the convergence of knowledge areas. Lab Chip 2016, 16, 3150–3176. [Google Scholar] [CrossRef]
- Almeida, M.I.G.S.; Jayawardane, B.M.; Kolev, S.D.; McKelvie, I.D. Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: A review. Talanta 2018, 177, 176–190. [Google Scholar] [CrossRef]
- Meredith, N.A.; Quinn, C.; Cate, D.M.; Reilly, T.H., III; Volkens, J.; Henry, C.S. Paper-based analytical devices for environmental analysis. Analyst 2016, 141, 1874–1887. [Google Scholar] [CrossRef]
- Aydindogan, E.; Celik, E.G.; Timur, S. Paper-based analytical methods for smartphone sensing with functional nanoparticles: Bridges from smart surfaces to global health. Anal. Chem. 2018, 90, 12325–12333. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Noviana, E.; Nguyen, M.P.; Geiss, B.J.; Dandy, D.S.; Henry, C.S. Paper-based microfluidic devices: Emerging themes and applications. Anal. Chem. 2017, 89, 71–91. [Google Scholar] [CrossRef] [PubMed]
- Nery, E.W.; Kubota, L.T. Sensing approaches on paper-based devices: A review. Anal. Bioanal. Chem. 2013, 405, 7573–7595. [Google Scholar] [CrossRef] [PubMed]
- Liana, D.D.; Raguse, B.; Gooding, J.J.; Chow, E. Recent advances in paper-based sensors. Sensors 2012, 12, 11505–11526. [Google Scholar] [CrossRef] [Green Version]
- Kaneta, T.; Alahmad, W.; Varanusupakul, P. Microfluidic paper-based analytical devices with instrument free detection and miniaturized portable detectors, Applied spectroscopy reviews. Appl. Spectrosc. Rev. 2019, 54, 117–141. [Google Scholar] [CrossRef] [Green Version]
- Carrilho, Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs)—A review. Anal. Chim. Acta 2017, 970, 1–22. [CrossRef]
- Cate, D.M.; Adkins, J.A.; Mettakoonpitak, J.; Henry, C.S. Recent developments in paper-based microfluidic devices. Anal. Chem. 2015, 87, 19–41. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Yu, H.; Tian, L.; Wang, Z. Portable and smart devices for monitoring heavy metal ions integrated with nanomaterials. TrAC, Trends Anal. Chem. 2018, 98, 190–200. [Google Scholar] [CrossRef]
- Ullah, N.; Mansha, M.; Khan, I.; Qurashi, A. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. TrAC, Trends Anal. Chem. 2018, 100, 155–166. [Google Scholar] [CrossRef]
- Sriram, G.; Bhat, M.P.; Patil, P.; Uthappa, U.T.; Jung, H.-Y.; Altalhi, T.; Kumeria, T.; Aminabhavi, T.M.; Pai, R.K.; Kurkuri, M.D. Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: A review. TrAC, Trends Anal. Chem. 2017, 93, 212–227. [Google Scholar] [CrossRef]
- Kang, S.-M.; Jang, S.-C.; Haldorai, Y.; Vilian, A.T.E.; Rethinasabapathy, M.; Roh, C.; Han, Y.-K.; Huh, Y.S. Facile fabrication of paper-based analytical devices for rapid and highly selective colorimetric detection of cesium in environmental samples. RSC Adv. 2017, 7, 48374–48385. [Google Scholar] [CrossRef] [Green Version]
- Pratiwi, R.; Nguyen, M.P.; Ibrahim, S.; Yoshioka, N.; Henry, C.S.; Tjahjono, D.H. A selective distance-based paper analytical device for copper(II) determination using a porphyrin derivative. Talanta 2017, 174, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Y.-J.; Wei, J.-F.; Xu, J.-r.; Wang, Y.-H.; Zheng, G.-X. Paper-based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone. Anal. Bioanal. Chem. 2014, 406, 2799–2807. [Google Scholar] [CrossRef] [PubMed]
- Rattanarat, P.; Dungchai, W.; Cate, D.M.; Siangproh, W.; Volckens, J.; Chailapakul, O.; Henry, C.S. A microfluidic paper-based analytical device for rapid quantification of particulate chromium. Anal. Chim. Acta 2013, 800, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Li, B.; Qi, A.; Tian, C.; Han, J.; Shi, Y.; Lin, B.; Chen, L. Improved assessment of accuracy and performance using a rotational paper based device for multiplexed detection of heavy metals. Talanta 2018, 178, 426–431. [Google Scholar] [CrossRef]
- Meredith, N.A.; Volckens, J.; Henry, C.S. Paper-based microfluidics for experimental design: Screening masking agents for simultaneous determination of Mn(II) and Co(II). Anal. Methods 2017, 9, 534–540. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, X.; Zhang, Q.; Zhang, H.; Li, H.; Meyerhoff, M. Colorimetric copper ion sensing in solution phase and on paper substrate based on catalytic decomposition of S-nitrosothiol. Anal. Chim. Acta 2019, 1053, 155–161. [Google Scholar] [CrossRef]
- Hossain, S.M.Z.; Brennan, J.D. β-Galactosidase-based colorimetric paper sensor for determination of heavy metals. Anal. Chem. 2011, 83, 8772–8778. [Google Scholar] [CrossRef]
- Cate, D.M.; Noblitt, S.D.; Volckens, J.; Henry, C.S. Multiplexed paper analytical device for quantification of metals using distance-based detection. Lab Chip 2015, 15, 2808–2818. [Google Scholar] [CrossRef] [Green Version]
- Mentele, M.M.; Cunningham, J.; Koehler, K.; Volckens, J.; Henry, C.S. Microfluidic paper-based analytical device for particulate metals. Anal. Chem. 2012, 84, 4474–4480. [Google Scholar] [CrossRef]
- Rattanarat, P.; Dungchai, W.; Cate, D.; Volckens, J.; Chailapakul, O.; Henry, C.S. Multilayer paper-based device for colorimetric and electrochemical quantification of metals. Anal. Chem. 2014, 86, 3555–3562. [Google Scholar] [CrossRef] [PubMed]
- Hofstetter, J.C.; Wydallis, J.B.; Neymark, G.; Reilly, T.H., III; Harrington, T.; Henry, C.S. Quantitative colorimetric paper analytical devices based on radial distance measurements for aqueous metal determination. Analyst 2018, 143, 3085–3090. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.W.; Cate, D.M.; Miller-Lionberg, D.D.; Reilly, T., III; Volckens, J.; Henry, C.S. Solid-phase extraction coupled to a paper-based technique for trace copper detection in drinking water. Environ. Sci. Technol. 2018, 52, 3567–3573. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, H.; Tashkhourian, J.; Hemmateenejad, B. A 3D origami paper-based analytical device combined with PVC membrane for colorimetric assay of heavy metal ions: Application to determination of Cu(II) in water samples. Anal. Chim. Acta 2020, 1126, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Aruna; Xu, Z.; Zhang, L.; Shen, W. Trace analysis on chromium (VI) in water by pre-concentration using a superhydrophobic surface and rapid sensing using a chemical-responsive adhesive tape. Talanta 2020, 218, 121116. [Google Scholar] [CrossRef]
- Li, B.; Fu, L.; Zhang, W.; Feng, W.; Chen, L. Portable paper-based device for quantitative colorimetric assays relying on light reflectance principle. Electrophoresis 2014, 35, 1152–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satarpai, T.; Shiowatana, J.; Siripinyanond, A. Paper-based analytical device for sampling, on-site preconcentration and detection of ppb lead in water. Talanta 2016, 154, 504–510. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, J.; Wang, Z.; Liu, C.; Xiao, W.; Han, J.; Shi, Q. Simultaneous multiplexed detection of protein and metal ions by a colorimetric microfluidic paper-based analytical device. BioChip J. 2020, 14, 429–437. [Google Scholar] [CrossRef]
- Ponram, M.; Balijapalli, U.; Sambath, B.; Iyer, S.K.; Kakaraparthi, K.; Thota, G.; Bakthavachalam, V.; Cingaram, R.; Sung-Ho, J.; Sundaramurthy, K.N. Inkjet-printed phosphorescent Iridium(III) complex based paper sensor for highly selective detection of Hg2+. Dyes Pigm. 2019, 163, 176–182. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Velázquez, A.; Lavilla, I.; Bendicho, C. A paper-based colorimetric assay with non-instrumental detection for determination of boron in water samples. Talanta 2020, 208, 120365. [Google Scholar] [CrossRef]
- Guo, J.; Huo, D.; Yang, M.; Hou, C.; Li, J.; Fa, H.; Luo, H.; Yang, P. Colorimetric detection of Cr(VI) based on the leaching of gold nanoparticles using a paper-based sensor. Talanta 2016, 161, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Ratnarathorn, N.; Chailapakul, O.; Henry, C.S.; Dungchai, W. Simple silver nanoparticle colorimetric sensing for copper by paper-based devices. Talanta 2012, 99, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.H.; Chen, W.-Y.; Yen, Y.-C.; Wang, C.-W.; Chang, H.-T.; Chen, C.-F. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 2014, 86, 6843–6849. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Fang, X.; Li, H.; Cao, H.; Kong, J. A Simple paper-based colorimetric device for rapid mercury(II) assay. Sci. Rep. 2016, 3, 31948. [Google Scholar] [CrossRef] [PubMed]
- Pourreza, N.; Golmohammadi, H.; Rastegarzadeh, S. Highly selective and portable chemosensor for mercury determination in water samples using curcumin nanoparticles in a paper based analytical device. RSC Adv. 2016, 6, 69060–69066. [Google Scholar] [CrossRef]
- Ismail, M.; Khan, M.I.; Akhtar, K.; Seo, J.; Khan, A.K.; Asiri, A.M.; Khan, S.B. Phytosynthesis of silver nanoparticles; naked eye cellulose filter paper dual mechanism sensor for mercury ions and ammonia in aqueous solution. J. Mater. Sci.: Mater. Electron. 2019, 30, 7367–7383. [Google Scholar] [CrossRef]
- Li, J.; Hou, C.; Huo, D.; Shen, C.; Luo, X.; Fa, H.; Yang, M.; Zhou, J. Detection of trace nickel ions with a colorimetric sensor based on indicator displacement mechanism. Sens. Actuators B 2017, 241, 1294–1302. [Google Scholar] [CrossRef]
- Shrivas, K.; Kant, T.M.; Karbhal, I.; Kurrey, R.; Sahu, B.; Sinha, D.; Patra, G.K.; Deb, M.K.; Pervez, S. Smartphone coupled with paper-based chemical sensor for on-site determination of iron(III) in environmental and biological samples. Anal. Bioanal. Chem. 2020, 412, 1573–1583. [Google Scholar] [CrossRef]
- Dong, R.-E.; Kang, P.; Xu, X.-L.; Cai, L.-X.; Guo, Z. Cation-exchange strategy for a colorimetric paper sensor: Belt-like ZnSe nanoframes toward visual determination of heavy metal ions. Sens. Actuators B 2020, 312, 128013. [Google Scholar] [CrossRef]
- Nath, P.; Arun, R.K.; Chanda, N. Smart gold nanosensor for easy sensing of lead and copper ions in solution and using paper strips. RSC Adv. 2015, 5, 69024–69031. [Google Scholar] [CrossRef]
- Sadollahkhani, A.; Hatamie, A.; Nur, O.; Willander, M.; Zargar, B.; Kazeminezhad, I. Colorimetric disposable paper coated with ZnO/ZnS core−shell nanoparticles for detection of copper ions in aqueous solutions. ACS Appl. Mater. Interfaces 2014, 6, 17694–17701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayawardane, B.M.; Wei, S.; McKelvie, I.D.; Kolev, S.D. Microfluidic paper-based analytical device for the determination of nitrite and nitrate. Anal. Chem. 2014, 86, 7274–7279. [Google Scholar] [CrossRef] [PubMed]
- López-Ruiz, N.; Curto, V.F.; Erenas, M.M.; Benito-Lopez, F.; Diamond, D.; Palma, A.J.; Capitan-Vallvey, L.F. Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal. Chem. 2014, 86, 9554–9562. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-C.; Hsu, C.-H.; Lu, B.-J.; Lin, P.-Y.; Ho, M.-L. Determination of nitrite ions in environment analysis with a paper-based microfluidic device. Dalton Trans. 2018, 47, 14799–14807. [Google Scholar] [CrossRef]
- Ortiz-Gomez, I.; Ortega-Muñoz, M.; Salinas-Castillo, A.; Álvarez-Bermejo, J.A.; Ariza-Avidad, M.; de Orbe-Paya, I.; Santoyo-Gonzalez, F.; Capitan-Vallvey, L.F. Tetrazine-based chemistry for nitrite determination in a paper microfluidic device. Talanta 2016, 160, 721–728. [Google Scholar] [CrossRef]
- Cardoso, T.M.G.; Garcia, P.T.; Coltro, W.K.T. Colorimetric determination of nitrite in clinical, food and environmental samples using microfluidic devices stamped in paper platforms. Anal. Methods 2015, 7, 7311–7317. [Google Scholar] [CrossRef]
- Wu, X.; Wang, H.; Yang, S.; Tian, H.; Liu, Y.; Sun, B. Highly sensitive ratiometric fluorescent paper sensors for the detection of fluoride ions. ACS Omega 2019, 4, 4918–4926. [Google Scholar] [CrossRef]
- Rull-Barrull, J.; d’Halluin, M.; Le Grognec, E.; Felpin, F.-X. Chemically-modified cellulose paper as smart sensor device for colorimetric and optical detection of hydrogen sulfate in water. Chem. Commun. 2016, 52, 2525–2528. [Google Scholar] [CrossRef]
- Duangdeewong, C.; Sitanurak, J.; Wilairat, P.; Nacapricha, D.; Teerasong, S. Microfluidic paper-based analytical device for convenient use in measurement of iodate in table salt and irrigation water. Microchem. J. 2020, 152, 104447. [Google Scholar] [CrossRef]
- Lert-itthiporn, A.; Srikritsadawong, P.; Choengchan, N. Foldable paper-based analytical device for membraneless gas-separation and determination of iodate based on fluorescence quenching of gold nanoclusters. Talanta 2021, 221, 121574. [Google Scholar] [CrossRef]
- Shahvar, A.; Saraji, M.; Gordan, H.; Shamsaei, D. Combination of paper-based thin film microextraction with smartphone based sensing for sulfite assay in food samples. Talanta 2019, 197, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cushing, S.K.; Wu, N. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Li, M.; Tang, H.; Su, J.; He, M.; Chen, G.; Guan, L.; Tian, J. Portable paper sensors for the detection of heavy metals based on light transmission-improved quantification of colorimetric assays. Analyst 2019, 144, 6382–6390. [Google Scholar] [CrossRef]
- Phoonsawat, K.; Ratnarathorn, N.; Henry, C.S.; Dungchai, W. A distance-based paper sensor for the determination of chloride ions using silver nanoparticles. Analyst 2018, 143, 3867–3873. [Google Scholar] [CrossRef] [PubMed]
- Costas-Mora, I.; Romero, V.; Lavilla, I.; Bendicho, C. An overview of recent advances in the application of quantum dots as luminescent probes to inorganic-trace analysis. TrAC Trends Anal. Chem. 2014, 57, 64–72. [Google Scholar] [CrossRef]
- Dong, Y.; Cai, J.; You, X.; Chi, Y. Sensing applications of luminescent carbon-based dots. Analyst 2015, 140, 7468–7486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 2014, 9, 132–157. [Google Scholar] [CrossRef]
- Huang, K.; Xu, K.; Zhu, W.; Yang, L.; Hou, X.; Zheng, C. Hydride generation for headspace solid-phase extraction with CdTe quantum dots immobilized on paper for sensitive visual detection of selenium. Anal. Chem. 2016, 88, 789–795. [Google Scholar] [CrossRef] [Green Version]
- Xiao, M.; Liu, Z.; Xu, N.; Jiang, L.; Yang, M.; Yi, C. A Smartphone-based sensing system for on-site quantitation of multiple heavy metal ions using fluorescent carbon nanodots-based microarrays. ACS Sens. 2020, 5, 870–878. [Google Scholar] [CrossRef]
- Anh, N.T.N.; Chowdhury, A.D.; Doong, R. Highly sensitive and selective detection of mercury ions using N,S-codoped graphene quantum dots and its paper strip based sensing application in wastewater. Sens. Actuators B 2017, 252, 1169–1178. [Google Scholar] [CrossRef]
- Li, X.; Zheng, Y.; Tang, Y.; Chen, Q.; Gao, J.; Luo, Q.; Wang, Q. Efficient and visual monitoring of cerium(III) ions by green-fluorescent carbon dots and paper-based sensing. Spectrochim. Acta Part A 2019, 206, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Zhou, Y.; Wu, L.; Qian, J.; Cao, S.; Deng, Y.; Chen, Y. Highly fluorescent nitrogen-doped graphene quantum dots’ synthesis and their applications as Fe(III) ions sensor. Int. J. Opt. 2019, 2019, 8724320. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, K.; Zhang, Z.; Wang, S. Highly selective and sensitive detection of mercuric ion based on a visual fluorescence method. Anal. Chem. 2012, 84, 9792–9801. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Lin, Y.; Xiong, J.; Wu, L.; Hou, X.; Xu, K.; Zheng, C. Disposable paper-based analytical device for visual speciation analysis of Ag(I) and silver nanoparticles (AgNPs). Anal. Chem. 2019, 91, 3359–3366. [Google Scholar] [CrossRef]
- Xiong, J.; Xu, K.; Hou, X.; Wu, P. AuNCs-catalyzed hydrogen selenide oxidation: Mechanism and application for headspace fluorescent detection of Se(IV). Anal. Chem. 2019, 91, 6141–6148. [Google Scholar] [CrossRef]
- Kim, Y.; Jang, G.; Lee, T.S. New fluorescent metal-ion detection using a paper-based sensor strip containing tethered rhodamine carbon nanodots. ACS Appl. Mater. Interfaces 2015, 7, 15649–15657. [Google Scholar] [CrossRef]
- Sari, E.; Üzek, R.; Merkoçi, A. Paper based photoluminescent sensing platform with recognition sites for tributyltin. ACS Sens. 2019, 4, 645–653. [Google Scholar] [CrossRef]
- Yu, S.; Li, W.; Fujii, Y.; Omura, T.; Minami, H. Fluorescent spherical sponge cellulose sensors for highly selective and semiquantitative visual analysis: Detection of Hg2+ and Cu2+ ions. ACS Sustain. Chem. Eng. 2019, 7, 19157–19166. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Chen, X.; Yang, B.; Yang, L.; Jiang, C.; Zhang, Z. Ratiometric fluorescent paper sensor utilizing carbon dots–quantum dots for the visual determination of copper ions. Nanoscale 2016, 8, 5977–5984. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, P.; Bian, M.; Huo, D.; Hou, C.; Qin, H.; Zhang, S.; Zhang, L. A Fluorescent detection method for copper ions, based on a direct redox route and desk study of wax-printed paper-based probes. Anal. Methods 2018, 10, 1895–1901. [Google Scholar] [CrossRef]
- Patir, K.; Gogoi, S.K. Nitrogen-doped carbon dots as fluorescence ON–OFF–ON sensor for parallel detection of copper(II) and mercury(II) ions in solutions as well as in filter paper-based microfluidic device. Nanoscale Adv. 2019, 1, 592–601. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Qu, Y.; Chai, F.; Chen, L. Facile preparation of highly sensitive and selective fluorescent paper sensor for the visual and cyclic detection of Cu2+ and Hg2+. New J. Chem. 2018, 42, 17478–17485. [Google Scholar] [CrossRef]
- Huang, K.; Dai, R.; Deng, W.; Guo, S.; Deng, H.; Wei, Y.; Zhou, F.; Long, Y.; Li, J.; Yuand, X.; et al. Gold nanoclusters immobilized paper for visual detection of zinc in whole blood and cells by coupling hydride generation with headspace solid phase extraction. Sens. Actuators B 2018, 255, 1631–1639. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Li, Q.; Wang, Z.; Xing, X.; Wang, Y. Portably colorimetric paper sensor based on ZnS quantum dots for semi-quantitative detection of Co2+ through the measurement of grey level. Sens. Actuators B 2018, 260, 1068–1075. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Xing, X.; Wang, Y. Grey level replaces fluorescent intensity: Fluorescent paper sensor based on ZnO nanoparticles for quantitative detection of Cu2+ without photoluminescence spectrometer. Sens. Actuators B 2018, 255, 2356–2366. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Liu, B.; Yu, S.; Jiang, C. A colorimetric paper sensor for visual detection of mercury ions constructed with dual-emission carbon dots. New J. Chem. 2018, 42, 15671–15677. [Google Scholar] [CrossRef]
- Gao, Y.; Jiao, Y.; Zhang, H.; Lu, W.; Liu, Y.; Han, H.; Gong, X.; Li, L.; Shuang, S.; Dong, C. One-step synthesis of a dual-emitting carbon dot-based ratiometric fluorescent probe for the visual assay of Pb2+ and PPi and development of a paper sensor. J. Mater. Chem. B 2019, 7, 5502–5509. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.; Chu, S.; Liu, B.; Zhang, Q.; Zou, L.; Yu, S.; Jiang, C. Semiquantitative visual detection of lead ions with a smartphone via a colorimetric paper-based analytical device. Anal. Chem. 2019, 91, 9292–9299. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Villar-Blanco, L.; Lavilla, I.; Bendicho, C. Test for arsenic speciation in waters based on a paper-based analytical device with scanometric detection. Anal. Chim. Acta 2018, 1011, 1–10. [Google Scholar] [CrossRef]
- Khatha, P.; Phutthaphongloet, T.; Timpa, P.; Ninwong, B.; Income, K.; Ratnarathorn, N.; Dungchai, W. Distance-based paper device combined with headspace extraction for determination of cyanide. Sensors 2019, 19, 2340. [Google Scholar] [CrossRef] [Green Version]
- İncela, A.; Akın, O.; Çağır, A.; Yıldız, Ü.H.; Demir, M.M. Smart phone assisted detection and quantification of cyanide in drinking water by paper based sensing platform. Sens. Actuators B 2017, 252, 886–893. [Google Scholar] [CrossRef]
- Nguyen, M.P.; Meredith, N.A.; Kelly, S.P.; Henry, C.S. Design considerations for reducing sample loss in microfluidic paper-based analytical devices. Anal. Chim. Acta 2018, 1017, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Li, X.; Yang, W.; Chen, L.; Guan, Y. Enhancement of sensitivity of paper-based sensor array for the identification of heavy-metal ions. Anal. Chim. Acta 2013, 780, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Jarujambus, P.; Meelapsom, R.; Pencharee, S.; Obma, A.; Amatatongchai, M.; Ditcharoen, N.; Chairam, S.; Tamuang, S. Use of a smartphone as a colorimetric analyzer in paper-based devices for sensitive and selective determination of mercury in water samples. Anal. Sci. 2018, 34, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.-H.; He, C.-Y. Advances in cellulose-based sorbents for extraction of pollutants in environmental samples. Chromatographia 2019, 82, 1151–1169. [Google Scholar] [CrossRef]
- de la Calle, I.; Lavilla, I.; Bartolome-Alonso, H.; Bendicho, C. Solid-phase extraction of Hg(II) using cellulose filters modified with silver nanoparticles followed by pyrolysis and detection by a direct mercury analyzer. Spectrochim. Acta Part B 2019, 161, 105697. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Niu, L.-Y.; Yang, Q.-Z.; Guan, Y.-F.; Feng, L. An SPE-assisted BODIPY fluorometric paper sensor for the highly selective and sensitive determination of Cd2+ in complex sample: Rice. Analyst 2014, 139, 3146–3153. [Google Scholar] [CrossRef]
- Bagheri, N.; Saraji, M. Combining gold nanoparticle-based headspace single-drop microextraction and a paper-based colorimetric assay for selenium determination. Anal. Bioanal. Chem. 2019, 411, 7441–7449. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Capón, N.; de la Calle, I.; Lavilla, I.; Bendicho, C. Fluorescent poly(vinylpyrrolidone)-supported copper nanoclusters in miniaturized analytical systems for iodine sensing. Sens. Actuators B 2019, 299, 126979. [Google Scholar] [CrossRef]
- Saraji, M.; Bagheri, N. Paper-based headspace extraction combined with digital image analysis for trace determination of cyanide in water samples. Sens. Actuators B 2018, 270, 28–34. [Google Scholar] [CrossRef]
- Li, D.; Duan, H.; Ma, Y.; Deng, W. Headspace-sampling paper-based analytical device for colorimetric/surface-enhanced raman scattering dual sensing of sulfur dioxide in wine. Anal. Chem. 2018, 90, 5719–5727. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Matesanz, O.; Lavilla, I.; Bendicho, C. A paper-based gas sensor for simultaneous non-instrumental colorimetric detection of nitrite and sulfide in waters. J. Sep. Sci. 2020, 43, 1908–1914. [Google Scholar] [CrossRef] [PubMed]
Target Analyte | Sample/Matrix | Nanostructured Receptor | Sensor Design | Signal Acquisition | Limit of Detection | Ref. |
---|---|---|---|---|---|---|
Chromogenic/fluorogenic reagents | ||||||
Cs(I) | Waters | Chrysoidine | PAD | Mobile camera | 100 ppb | [25] |
Cu(II) | Drinking water | Porphirin derivative | µPAD | Distance-based measurement (naked eye) | 1 ppm | [26] |
Cu(II), Cd(II) | Waters | Diethyldithiocarbamate, | 3D µPAD | Mobile phone | 0.29 (Cu), 0.33 (Ni) | [27] |
Ni(II), Cr(VI) | dimethylglyoxime, cadion, diphenylcarbazide | 0.19 (Cd), 0.35 (Cr) (in ppm) | ||||
Cr(VI) | Airborne particulate | Diphenylcarbazide | µPAD | Desktop scanner | 0.12 µg Cr | [28] |
Ni(II), Cr(VI), | Lake water | Dimethylglyoxime, | Rotational µPAD | Hand-held device | 4.8 (Ni), 1.6 (Cu) | [29] |
Cu(II) | Seawater | diphenylcarbazide, bathocuproine | (Reflectance) | 0.18 (Cr) (in ppm) | ||
Mn(II), Co(II) | --- | PAR | µPAD | Naked eye (no quantitative) | Screening of masking agents | [30] |
Cu(II) | Tap and river water | S-Nitroso-N-acetylpenicillamine (SNAP) (catalytic effect) | PAD | Mobile camera | 1.2 µM | [31] |
Hg(II), Cu(II) | Tap and lake | Zincon, dimethylglyoxime, | µPAD | Digital camera, | 1 ppb (Hg), 20 ppb (Cu) | [32] |
Cr(VI), Ni(II) | water | diethyldithiocarbamate, diphenylcarbazide | scanner | 0.15 ppm Cr(VI), 0.23 ppm Ni(II). | ||
Cu(II), Ni(II), Fe(III) | Airborne particulatematter | Dimethylglyoxime, dithiooxamide, bathophenanthroline, | µPAD (distance-based) | Scanner | 0.1 (Ni, Cu) 0.05 (Cr) (in µg) | [33] |
Fe(III), Cu(II), Ni(II) | Particulate matter | 1,10-phenanthroline, dimethylglyoxime, bathocuproine | µPAD | Scanner | 1.5 (Fe), 1 (Cu) 1 (Ni) (in µg) | [34] |
Ni, Fe, Cu, Cr | Particulate matter | 1,10-phenanthroline, dimethylglyoxime, diphenylcarbazide, bathocuproine | µPAD | Scanner | 0.75 (Fe, Ni, Cu), 0.12 (Cr) (in µg) | [35] |
Cu(II), Fe(III), Zn(II) | Waters | Zincon, bathophenanthroline, dithizone | µPAD | Distance-based | 100 ppb (ca. 1-2.5 ppb with previous membrane preconcentration | [36] |
Cu(II) | Drinking water | Dithiooxamide | µPAD SPE preconcentration | (distance-based) | (20 ppb) | [37] |
Cu(II) | Rain and tap water | Chrome azurol S and pyrocatechol violet | 3D µPAD | Scanner | 1.7 and 1.9 ppm, resp. | [38] |
Cr(VI) | Tap water | 1,5-difenylcarbazide | PAD (SH-CAT) | Scanner | 0.05 ppm Cr(VI) | [39] |
Fe(II), nitrite | Tap water | Griess (nitrite), | PAD | Reflectance | 0.53 ppm (nitrite) | [40] |
BSA, glucose | 1,10-phenanthroline (Fe) | spectroscopy | ||||
Pb(II) | Drinking water, tap water, wastewater | Sodium rhodizonate | µPAD | Smartphone, scanner | 10 ppb Pb | [41] |
Fe(III), Ni(II) | River water | 1,10-phenanthroline, | µPAD | Tablet camera | 0.1 mM (Fe), 0.5 mM (Ni) | [42] |
BSA | dimethylglyoxime, tetrabromophenyl blue | and (BSA) (µM) | ||||
Hg(II) | -- | Ir(III) complex | PAD | Naked eye | 1.88 × 10−3 M | [43] |
B(III) | Wastewater, Seawater | Curcumin, Curcumin Longa L. extracts | PAD | Scanner, tablet camera | 0.2-0.8 ppm (depending on PAD) | [44] |
Nanostructured receptors | ||||||
Cr(VI) | River water | BSA capped-AuNPs | Silanization-TiO2 Modified paper | Scanner | 280 nM | [45] |
Cu(II) | Pond, tap water Hg(II) | AgNPs Pond, river water | PAD and µPAD AuNPs PAD | Digital camera, smartphone | 0.5 ppb Cu 50 nM | [46] [47] |
Hg(II) | Pond and tap water | PtNPs and TMB | PAD | Digital camera and smartphone | 0.01 µM | [48] |
Hg(II) | Waters | Curcumin NPs | PAD | Digital camera | 0.17 ppm (direct) 0.003 ppm (Prec.) | [49] |
Hg(II), NH3 | --- | AgNPs (phytosynthesis) | PAD | Photometry and naked eye | 5 ppb Hg, 5 ppm NH3 (Photometry), 5 ppm (naked eye) | [50] |
Ni(II) | River water Tap water | Zincon-ZnSiO3 nanospheres | PAD | Scanner | 36 nM Ni | [51] |
Fe(III) | Water, blood | AgNPs-CTAB | PAD | Smartphone | 20 ppb Fe | [52] |
Ag(I), Cu(II) Hg(II) | Water | ZnSe nanocrystals | PAD | Mobile camera | 1 ppm (Cu) 5 ppm (Hg, Ag) | [53] |
Pb(II), Cu(II) | Waters | AuNPs-TA-DNS | µPAD | Naked eye | >10 ppb | [54] |
Cu(II) | River water | ZnO/ZnS core shell NPs | PAD | Digital camera | 15 µM | [55] |
Target Analyte | Sample/Matrix | Nanostructured Receptor | Sensor Design | Signal Acquisition | Analytical Characteristics | Ref. |
---|---|---|---|---|---|---|
Se(IV) | Hair, sediment, urine | CdTe QDs | PAD | Fluorescence under UV irradiation | 0.1 ppb Se | [72] |
Hg(II), Pb(II), Cu(II) | River water | CDs | PAD (microarray) | Smartphone | 5.8 nM (Hg) 0.12 µM (Pb) 0.076 µM (Cu) | [73] |
Hg(II) | Wastewater | GQDs (N, S-codoped) | PAD | Digital camera (UV irradiation) | 0.14 nM | [74] |
Ce(III) | River water | Carbon dots | PAD | Naked eye (UV irradiation) | 0.7 µM (fluorimetry) | [75] |
Fe(III) | -- | N-doped GQDs | PAD | Naked eye (UV irradiation) | 2.37 µM (fluorimetry) | [76] |
Hg(II) | Water, urine | CdSe/ZnS QDs (functionalized with HDTC) | PAD | Naked eye (UV irradiation) | 0.2 ppm Hg | [77] |
Ag(I), AgNPs | River water | CdTe QDs | PAD | Naked eye (UV irradiation, distance measurement) | 0.01 ppm (Ag) | [78] |
Se(IV) | Tap water, seawater fish, rice, eggs | AuNCs | PAD | Naked eye (UV irradiation) and fluorimetry | 4 ppb (Se) | [79] |
Al(III) | ---- | C-dots-R6G | PAD | Digital camera (UV irradiation) and fluorimetry | 3.89 × 10−5 M (PAD) | [80] |
Tri-butyl-Sn | Seawater | GQDs conjugated with MIN | PAD | Fluorimetry | 0.23 ppt | [81] |
Hg(II), Cu(II) | Tap and river water | CS-CDs | Sponge cellulose | Mobile camera (UV irradiation) | 26 nM (Al); 0.11 and 3 µM (Cu), by fluorimetry and PAD, resp. | [82] |
Cu(II) | Tap water, Lake water | Hybrid CdTe-CDs | PAD | Digital camera (UV irradiation) | 0.36 nM (fluorimetry) | [83] |
Cu(II) | Urine, tap water, Sorghum extract | BSA-AuNCs | PAD | Naked eye (UV irradiation) | 5 nM (fluorimetry) | [84] |
Cu(II), Hg(II) | Tap water | N-doped CDs | µPAD | Digital camera (UV irradiation) | 0.1 µM (µPAD); 6.2 nM (Hg), 2.3 nM (Cu) by fluorimetry | [85] |
Cu(II), Hg(II) | Tap and lake water | CQDs | PAD | Naked eye | 5 (Cu), 3 (Hg) (µM) | [86] |
Zn(II) | Water, blood, cells | AuNCS | PAD | Naked eye and fluorimetry | 3 ppb (fluorimetry) 20 ppb (naked eye under UV irradiation) | [87] |
Co(II) | --- | ZnS QDs | PAD | Mobile camera | 10 ppm | [88] |
Cu(II) | -- | ZnO NPs | PAD | Mobile camera | 10 µM | [89] |
Hg(II) | Tap water Lake water | CDs | PAD | Naked eye (UV irradiation) | 0.14 µM | [90] |
Pb(II) | --- | CDs | PAD | Fluorimetry and naked eye | 0.055 µM (fluorimetry) | [91] |
Pb(II) | Waters | CDs | PAD | Fluorimetry and smartphone camera | 2.89 nM (fluorimetry) 45.9 nM (PAD) | [92] |
Chemical Species | EPA a | WHO b | European Directive c |
---|---|---|---|
Al | -- | -- | 200 ppb |
As | 10 ppb | 10 ppb | 10 ppb |
Sb | 6 ppb | 20 ppb | 5 ppb |
Ba | 2 ppm | 1.3 ppm | |
Be | 4 ppb | ||
Cd | 5 ppb | 3 ppb | 5 ppb |
Cr(T) | 100 ppb | 50 ppb | 50 ppb |
Cu | TT * action level = 1.3 ppm | 2 ppm | 2 ppm |
Pb | TT * action level = 15 ppb | 10 | 10 ppb |
Hg | 2 ppb | 6 ppb | 1 ppb |
Se | 50 ppb | 40 ppb | 10 ppb |
Tl | 2 ppb | ||
Ni | -- | 70 ppb | 20 ppb |
B | -- | 2.4 ppm | 1 ppm |
U | -- | 30 ppb | |
Fe | -- | -- | 200 ppb |
Mn | -- | -- | 50 ppb |
Cyanide | 200 ppb | 50 ppb | |
Fluoride | 4 ppm | 1.5 ppm | 1.5 ppm |
Nitrate | 10 ppm | 50 ppm | 50 ppm |
Nitrite | 1 ppm | 3 ppm | 0.5 ppm |
Bromate | 10 ppb | 10 ppb | 10 ppb |
Chlorite | 1 ppm | 0.7 ppm | |
Chlorate | -- | 0.7 ppm | |
Chloride | 250 ppm | ||
Sulphate | -- | -- | 250 ppm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bendicho, C.; Lavilla, I.; Pena-Pereira, F.; de la Calle, I.; Romero, V. Nanomaterial-Integrated Cellulose Platforms for Optical Sensing of Trace Metals and Anionic Species in the Environment. Sensors 2021, 21, 604. https://doi.org/10.3390/s21020604
Bendicho C, Lavilla I, Pena-Pereira F, de la Calle I, Romero V. Nanomaterial-Integrated Cellulose Platforms for Optical Sensing of Trace Metals and Anionic Species in the Environment. Sensors. 2021; 21(2):604. https://doi.org/10.3390/s21020604
Chicago/Turabian StyleBendicho, Carlos, Isela Lavilla, Francisco Pena-Pereira, Inmaculada de la Calle, and Vanesa Romero. 2021. "Nanomaterial-Integrated Cellulose Platforms for Optical Sensing of Trace Metals and Anionic Species in the Environment" Sensors 21, no. 2: 604. https://doi.org/10.3390/s21020604
APA StyleBendicho, C., Lavilla, I., Pena-Pereira, F., de la Calle, I., & Romero, V. (2021). Nanomaterial-Integrated Cellulose Platforms for Optical Sensing of Trace Metals and Anionic Species in the Environment. Sensors, 21(2), 604. https://doi.org/10.3390/s21020604