Structural Damage Identification Based on Integrated Utilization of Inverse Finite Element Method and Pseudo-Excitation Approach
Abstract
:1. Introduction
2. Methodologies
2.1. The Inverse Finite Element Method (iFEM)
2.1.1. Kinematic Relations
2.1.2. In Situ Strain Measurement
2.1.3. Establishment of the Weighted Least-Square Functional
2.2. Pseudo-Excitation (PE) Approach
2.3. The iFEM-PE Method
3. Damage Identification in a CFRP Laminate Using the iFEM-PE Method
3.1. Numerical Model
3.2. Reconstruction of Vibration Displacements under Intact State
3.3. Damage Identification without Measurement Noise
3.3.1. Identification of Single Delamination Zones
3.3.2. Identification of Multiple Delamination Zones
4. Parametric Discussion
4.1. Influence of Measurement Density
4.2. Influence of Measurement Noise
4.3. AD-NI Analysis
5. Delamination Identification under Simulated Structural Operational States
5.1. Uni-Axial Strain Measurement
5.2. Hybrid Data Fusion
5.3. Delamination Identification Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farrar, C.R.; Czarnecki, J.J.; Sohn, H.; Hemez, F.M. A Review of Structural Health Monitoring Literature 1996–2001; Los Alamos National Laboratory Report; Los Alamos National Laboratory: Los Alamos, NM, USA, 2002.
- Chase, J.G.; Begoc, V.; Barroso, L.R. Efficient structural health monitoring for a benchmark structure using adaptive RLS filters. Comput. Struct. 2005, 83, 639–647. [Google Scholar] [CrossRef]
- Worden, K.; Farrar, C.R.; Manson, G.; Park, G. The fundamental axioms of structural health monitoring. Proc. R. Soc. A Math. Phys. 2007, 463, 1639–1664. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Z.; Yang, Z.; Liu, K.; Zhou, K.; Zheng, Y. Excitation of guided wave modes in arbitrary cross-section structures by applied surface tractions. Smart Mater. Struct. 2020, 29, 065010. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L.; Lu, Y. Guided Lamb waves for identification of damage in composite structures: A review. J. Sound Vib. 2006, 295, 753–780. [Google Scholar] [CrossRef]
- Ostachowicz, W.; Kudela, P.; Malinowski, P.; Wandowski, T. Damage localisation in plate-like structures based on PZT sensors. Mech. Syst. Signal Process. 2009, 23, 1805–1829. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, F.G. Damage Identification in a Composite Plate using Prestack Reverse-time Migration Technique. Struct. Health Monit. 2005, 4, 195–211. [Google Scholar] [CrossRef]
- Foss, G.C.; Haugse, E.D. Using Modal Test Results to Develop Strain to Displacement Transformations. Proc. SPIE Int. Soc. Opt. Eng. 1995, 2460, 112. [Google Scholar]
- Ko, W.L.; Fleischer, V.T. Further Development of Ko Displacement Theory for Deformed Shape Predictions of Nonuniform Aerospace Structures; NASA/TP-2009-214643; NASA Dryden Flight Research Center: Edwards, CA, USA, 2009; p. 214643.
- Ko, W.L.; Fleischer, V.T. Large-Deformation Displacement Transfer Functionals for Shape Predictions of Highly Flexible Slender Aerospace Structures; NASA/TP—2013–216550; NASA Dryden Flight Research Center: Edwards, CA, USA, 2013.
- Lu, R.; Wu, Z.; Zhou, Q.; Xu, H. Monitoring of Real-Time Complex Deformed Shapes of Thin-Walled Channel Beam Structures Subject to the Coupling Between Bi-Axial Bending and Warping Torsion. SDHM Struct. Durab. Health Monit. 2019, 13, 267–287. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Lu, Y.; Zhang, Z. Tikhonov regularization-based operational transfer path analysis. Mech. Syst. Signal Process. 2016, 75, 494–514. [Google Scholar] [CrossRef]
- Liu, J.; Meng, X.; Zhang, D.; Jiang, C.; Han, X. An efficient method to reduce ill-posedness for structural dynamic load identification. Mech. Syst. Signal Process. 2017, 95, 273–285. [Google Scholar] [CrossRef]
- Worden, K.A.A.; Tomlinson, G.R.A.; Yagasaki, K.R. Nonlinearity in Structural Dynamics: Detection, Identification and Modeling. Appl. Mech. Rev. 2001, 55, B26–B27. [Google Scholar] [CrossRef]
- Peng, J.; Li, S.; Fan, Y. Modeling and Parameter Identification of the Vibration Characteristics of Armature Assembly in a Torque Motor of Hydraulic Servo Valves under Electromagnetic Excitations. Adv. Mech. Eng. 2014, 6, 247384. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.C.; Zhang, F.L. Fast Bayesian approach for modal identification using forced vibration data considering the ambient effect. Mech. Syst. Signal Process. 2018, 105, 113–128. [Google Scholar] [CrossRef]
- Tessler, A.; Spangler, J.L. A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells. Comput. Methods Appl. Mech. Eng. 2005, 194, 327–339. [Google Scholar]
- Kefal, A.; Tessler, A.; Oterkus, E. An enhanced inverse finite element method for displacement and stress monitoring of multilayered composite and sandwich structures. Compos. Struct. 2017, 179, 514–540. [Google Scholar] [CrossRef] [Green Version]
- Miller, E.; Manalo, R.; Tessler, A. Full-Field Reconstruction of Structural Deformations and Loads from Measured Strain Data on a Wing Test Article Using the Inverse Finite Element Method; NASA Report, NASA/TM-2016-219407; NASA Armstrong Flight Research Center: Edwards, CA, USA, 2016.
- Tessler, A.; Hughes, T.J.R. An improved treatment of transverse shear in the mindlin-type four-node quadrilateral element. Comput. Method. Appl. Mech. 2015, 39, 311–335. [Google Scholar] [CrossRef]
- Tessler, A.; Hughes, T.J.R. A three-node mindlin plate element with improved transverse shear. Comput. Method Appl. Eng. 1985, 50, 71–101. [Google Scholar] [CrossRef]
- Barut, A.; Madenci, E.; Tessler, A. C0-continuous triangular plate element for laminated composite and sandwich plates using the 2,2–Refined Zigzag Theory. Compos. Struct. 2013, 106, 835–853. [Google Scholar] [CrossRef]
- Kefal, A.; Oterkus, E.; Tessler, A.; Spangler, J.L. A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural health monitoring. Eng. Sci. Technol. Int. J. 2016, 19, 1299–1313. [Google Scholar] [CrossRef] [Green Version]
- Kefal, A.; Oterkus, E. Displacement and stress monitoring of a chemical tanker based on inverse finite element method. Ocean Eng. 2016, 112, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Kefal, A.; Oterkus, E. Displacement and stress monitoring of a Panamax containership using inverse finite element method. Ocean Eng. 2016, 119, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Colombo, L.; Sbarufatti, C.; Giglio, M. Definition of a load adaptive baseline by inverse finite element method for structural damage identification. Mech. Syst. Signal Process. 2019, 120, 584–607. [Google Scholar] [CrossRef]
- Li, M.; Kefal, A.; Cerik, B.C.; Oterkus, E. Dent damage identification in stiffened cylindrical structures using inverse Finite Element Method. Ocean Eng. 2020, 198, 106944. [Google Scholar] [CrossRef]
- Yam, L.H.; Yan, Y.J.; Jiang, J.S. Vibration-based damage detection for composite structures using wavelet transform and neural network identification. Compos. Struct. 2003, 60, 403–412. [Google Scholar] [CrossRef]
- Alvandi, A.; Cremona, C. Assessment of vibration-based damage identification techniques. J. Sound Vib. 2006, 292, 179–202. [Google Scholar] [CrossRef]
- Fan, W.; Qiao, P. Vibration-based Damage Identification Methods: A Review and Comparative Study. Struct. Health Monit. 2011, 9, 83–111. [Google Scholar] [CrossRef]
- Antonacci, E.; De Stefano, A.; Gattulli, V.; Lepidi, M.; Matta, E. Comparative study of vibration-based parametric identification techniques for a three-dimensional frame structure. Struct. Control Health Monit. 2012, 19, 579–608. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, L.; Su, Z.; Guyader, J.L. Identification of structural damage based on locally perturbed dynamic equilibrium with an application to beam component. J. Sound Vib. 2011, 330, 5963–5981. [Google Scholar] [CrossRef]
- Cao, M.; Cheng, L.; Su, Z.; Xu, H. A multi-scale pseudo-force model in wavelet domain for identification of damage in structural components. Mech. Syst. Signal Process. 2012, 28, 638–659. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, L.; Su, Z.; Guyader, J.L. Damage visualization based on local dynamic perturbation: Theory and application to characterization of multi-damage in a plane structure. J. Sound Vib. 2013, 332, 3438–3462. [Google Scholar] [CrossRef]
- Xu, H.; Su, Z.; Cheng, L.; Guyader, J.-L. On a hybrid use of structural vibration signatures for damage identification: A virtual vibration deflection (VVD) method. J. Sound Vib. 2016, 23, 615–631. [Google Scholar] [CrossRef]
- Cao, M.; Su, Z.; Xu, H.; Radzieński, M.; Xu, W.; Ostachowicz, W. A novel damage characterization approach for laminated composites in the absence of material and structural information. J. Sound Vib. 2020, 143, 106831. [Google Scholar] [CrossRef]
- Renzi, C.; Pézerat, C.; Guyader, J.-L. Local force identification on flexural plates using reduced Finite Element models. Comput. Struct. 2014, 144, 75–91. [Google Scholar] [CrossRef]
- Zymelka, D.; Togashi, K.; Ohigashi, R.; Yamashita, T.; Takamatsu, S.; Itoh, T.; Kobayashi, T. Printed strain sensor array for application to structural health monitoring. Smart. Mater. Struct. 2017, 26, 105040. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, M.; Xu, H.; Liu, W.; Liao, Y.; Jin, H.; Zhou, L.; Zhang, Z.; Su, Z. A coatable, light-weight, fast-response nanocomposite sensor for the in situ acquisition of dynamic elastic disturbance: From structural vibration to ultrasonic waves. Smart Mater. Struct. 2016, 25, 065005. [Google Scholar] [CrossRef]
- Xu, H.; Zeng, Z.; Wu, Z.; Zhou, L.; Su, Z.; Liao, Y.; Liu, M. Broadband dynamic responses of flexible carbon black/poly (vinylidene fluoride) nanocomposites: A sensitivity study. Compos. Sci. Technol. 2017, 149, 246–253. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, M.; Xu, H.; Liao, Y.; Duan, F.; Zhou, L.-M.; Jin, H.; Zhang, Z.; Su, Z. Ultra-broadband frequency responsive sensor based on lightweight and flexible carbon nanostructured polymeric nanocomposites. Carbon 2017, 121, 490–501. [Google Scholar] [CrossRef]
- Kang, L.H.; Kim, D.K.; Han, J.H. Vibration, Estimation of dynamic structural displacements using fiber Bragg grating strain sensors. J. Sound Vib. 2007, 305, 534–542. [Google Scholar]
- Barrias, A.; Casas, J.R.; Villalba, S. Embedded Distributed Optical Fiber Sensors in Reinforced Concrete Structures—A Case Study. Sensors 2018, 18, 980. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Chen, X. Fiber Bragg Gratings Sensors for Aircraft Wing Shape Measurement: Recent Applications and Technical Analysis. Sensors 2018, 19, 55. [Google Scholar]
- Chaube, P.; Colpitts, B.G.; Jagannathan, D.; Brown, A.W. Distributed Fiber-Optic Sensor for Dynamic Strain Measurement. IEEE Sens. J. 2008, 8, 1067–1072. [Google Scholar] [CrossRef]
- Gifford, D.; Sang, A.; Kreger, S.; Froggatt, M. Strain measurements of a fiber loop rosette using high spatial resolution Rayleigh scatter distributed sensing. In Proceedings of the (EWOFS’10) Fourth European Workshop on Optical Fibre Sensors, Porto, Portugal, 8–10 September 2010; Volume 7653, p. 765333. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7653/765333/Strain-measurements-of-a-fiber-loop-rosette-using-high-spatial/10.1117/12.866536.short?SSO=1 (accessed on 7 January 2021).
- Shan, Y.; Xu, H.; Zhou, Z.; Yuan, Z.; Xu, X.; Wu, Z.J. State sensing of composite structures with complex curved surface based on distributed optical fiber sensor. J. Intell. Mater. Syst. Struct. 2019, 30, 1951–1968. [Google Scholar] [CrossRef]
Young’s Modulus [GPa] (E1/E2/E3) | Shear Modulus [GPa] (G12/G13/G23) | Poisson’s Ratio (v12/v13/v23) | |
---|---|---|---|
157.9/9.6/9.6 | 5.9/5.9/3.2 | 0.32/0.32/0.49 | 1620 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Cao, M.; Li, J.; Yang, L.; Xu, H.; Wu, Z. Structural Damage Identification Based on Integrated Utilization of Inverse Finite Element Method and Pseudo-Excitation Approach. Sensors 2021, 21, 606. https://doi.org/10.3390/s21020606
Li T, Cao M, Li J, Yang L, Xu H, Wu Z. Structural Damage Identification Based on Integrated Utilization of Inverse Finite Element Method and Pseudo-Excitation Approach. Sensors. 2021; 21(2):606. https://doi.org/10.3390/s21020606
Chicago/Turabian StyleLi, Tengteng, Maosen Cao, Jianle Li, Lei Yang, Hao Xu, and Zhanjun Wu. 2021. "Structural Damage Identification Based on Integrated Utilization of Inverse Finite Element Method and Pseudo-Excitation Approach" Sensors 21, no. 2: 606. https://doi.org/10.3390/s21020606
APA StyleLi, T., Cao, M., Li, J., Yang, L., Xu, H., & Wu, Z. (2021). Structural Damage Identification Based on Integrated Utilization of Inverse Finite Element Method and Pseudo-Excitation Approach. Sensors, 21(2), 606. https://doi.org/10.3390/s21020606