Quantifying Coordination and Variability in the Lower Extremities after Anterior Cruciate Ligament Reconstruction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure and Data Collection
2.3. Data Processing and Variable Calculation
2.4. Statistical Analysis
3. Results
3.1. CRP in Hip–Knee and Knee–Ankle Joints by Difficulty of Exercise
3.2. CRP Variability in Hip–Knee and Knee–Ankle Joints by Difficulty of Exercise
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beckett, M.E.; Massie, D.L.; Bowers, K.D.; Stoll, D.A. Incidence of hyperpronation in the ACL injured knee: A clinical perspective. J. Athl. Train. 1992, 27, 58. [Google Scholar] [PubMed]
- Ford, K.R.; Myer, G.D.; Toms, H.E.; Hewett, T.E. Gender differences in the kinematics of unanticipated cutting in young athletes. Med. Sci. Sports Exerc. 2005, 37, 124–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.A.; Byun, J.C. The effects of accelerated rehabilitation exercise program after anterior cruciate ligament reconstruction. Korean J. Growth Dev. 2006, 14, 61–69. [Google Scholar]
- Lohmander, L.S.; Östenberg, A.; Englund, M.; Roos, H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004, 50, 3145–3152. [Google Scholar] [CrossRef] [PubMed]
- Marshall, S.W.; Padua, D.; McGrath, M. Understanding and Preventing Noncontact ACL Injuries; Human Kinetics Publishers: Champaign, IL, USA, 2007. [Google Scholar]
- Mall, N.A.; Chalmers, P.N.; Moric, M.; Tanaka, M.J.; Cole, B.J.; Bach, B.R., Jr.; Paletta, G.A., Jr. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am. J. Sports Med. 2014, 42, 2363–2370. [Google Scholar] [CrossRef]
- Brophy, R.H.; Wright, R.W.; Matava, M.J. Cost analysis of converting from single-bundle to double-bundle anterior cruciate ligament reconstruction. Am. J. Sports Med. 2009, 37, 683–687. [Google Scholar] [CrossRef]
- Gribbin, T.C.; Slater, L.V.; Herb, C.C.; Hart, J.M.; Chapman, R.M.; Hertel, J.; Kuenze, C.M. Differences in hip–knee joint coupling during gait after anterior cruciate ligament reconstruction. Clin. Biomech. 2016, 32, 64–71. [Google Scholar] [CrossRef]
- Ardern, C.L.; Taylor, N.F.; Feller, J.A.; Webster, K.E. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: An updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br. J. Sports Med. 2014, 48, 1543–1552. [Google Scholar] [CrossRef] [Green Version]
- Gianotti, S.M.; Marshall, S.W.; Hume, P.A.; Bunt, L. Incidence of anterior cruciate ligament injury and other knee ligament injuries: A national population-based study. J. Sci. Med. Sport 2009, 12, 622–627. [Google Scholar] [CrossRef]
- Kyritsis, P.; Witvrouw, E. Return to sport after anterior cruciate ligament reconstruction: A literature review. J. Nov. Physiother. 2014, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Hart, J.M.; Ko, J.W.K.; Konold, T.; Pietrosimone, B. Sagittal plane knee joint moments following anterior cruciate ligament injury and reconstruction: A systematic review. Clin. Biomech. 2010, 25, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.M.; Pietrosimone, B.; Hertel, J.; Ingersoll, C.D. Quadriceps activation following knee injuries: A systematic review. J. Athl. Train. 2010, 45, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewett, T.E.; Di Stasi, S.L.; Myer, G.D. Current concepts for injury prevention in athletes after anterior cruciate ligament reconstruction. Am. J. Sports Med. 2013, 41, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, C.; Williams, G.N. Factors explaining chronic knee extensor strength deficits after ACL reconstruction. J. Orthop. Res. 2011, 29, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Palmieri-Smith, R.M.; Thomas, A.C. A neuromuscular mechanism of posttraumatic osteoarthritis associated with ACL injury. Exerc. Sport Sci. Rev. 2009, 37, 147–153. [Google Scholar] [CrossRef]
- Palmieri-Smith, R.M.; Thomas, A.C.; Wojtys, E.M. Maximizing quadriceps strength after ACL-Reconstruction. Clin. Sports Med. 2008, 27, 405–424. [Google Scholar] [CrossRef]
- Urbach, D.; Nebelung, W.; Becker, R.; Awiszus, F. Effects of reconstruction of the anterior cruciate ligament on voluntary activation of quadriceps femoris: A prospective twitch interpolation study. J. Bone Jt. Surg. Br. Vol. 2001, 83, 1104–1110. [Google Scholar] [CrossRef]
- Pelah, A.; Thurrell, A.E.I. Reduction of perceived visual speed during locomotion: Evidence for quadrupedal perceptual pathways in human? J. Vis. 2001, 1, 307a. [Google Scholar] [CrossRef]
- Tibone, J.E.; Antich, T.J.; Fanton, G.S.; Moynes, D.R.; Perry, J. Functional analysis of anterior cruciate ligament instability. Am. J. Sports Med. 1986, 14, 276–284. [Google Scholar] [CrossRef]
- Wu, W.H.; Hackett, T.; Richmond, J.C. Effects of meniscal and articular surface status on knee stability, function, and symptoms after anterior cruciate ligament reconstruction: A long-term prospective study. Am. J. Sports Med. 2002, 30, 845–850. [Google Scholar] [CrossRef]
- Ferber, R.; Osternig, L.R.; Woollacott, M.H.; Wasielewski, N.J.; Lee, J.H. Gait mechanics in chronic ACL deficiency and subsequent repair. Clin. Biomech. 2002, 17, 274–285. [Google Scholar] [CrossRef]
- Ferber, R.; Osternig, L.R.; Woollacott, M.H.; Wasielewski, N.J.; Lee, J.H. Gait perturbation response in chronic anterior cruciate ligament deficiency and repair. Clin. Biomech. 2003, 18, 132–141. [Google Scholar] [CrossRef]
- Gao, B.; Zheng, N.N. Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and -reconstructed knees during walking. Clin. Biomech. 2010, 25, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Timoney, J.M.; Inman, W.S.; Quesada, P.M.; Sharkey, P.F.; Barrack, R.L.; Skinner, H.B.; Alexander, A.H. Return of normal gait patterns after anterior cruciate ligament reconstruction. Am. J. Sports Med. 1993, 21, 887–889. [Google Scholar] [CrossRef]
- Webster, K.E.; Wittwer, J.E.; O’Brien, J.; Feller, J.A. Gait patterns after anterior cruciate ligament reconstruction are related to graft type. Am. J. Sports Med. 2005, 33, 247–254. [Google Scholar] [CrossRef]
- Wang, H.; Fleischli, J.E.; Zheng, N.N. Transtibial versus anteromedial portal technique in single–bundle anterior cruciate ligament reconstruction: Outcomes of knee joint kinematics during walking. Am. J. Sports Med. 2013, 41, 1847–1856. [Google Scholar] [CrossRef]
- Webster, K.E.; Feller, J.A. Alterations in joint kinematics during walking following hamstring and patellar tendon anterior cruciate ligament reconstruction surgery. Clin. Biomech. 2011, 26, 175–180. [Google Scholar] [CrossRef]
- Zabala, M.E.; Favre, J.; Scanlan, S.F.; Donahue, J.; Andriacchi, T.P. Three–dimensional knee moments of ACL reconstructed and control subjects during gait, stair ascent, and stair descent. J. Biomech. 2013, 46, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Tashman, S.; Collon, D.; Anderson, K.; Kolowich, P.; Anderst, W. Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am. J. Sports Med. 2004, 32, 975–983. [Google Scholar] [CrossRef]
- Tashman, S.; Kolowich, P.; Collon, D.; Anderson, K.; Anderst, W. Dynamic function of the ACL-reconstructed knee during running. Clin. Orthop. Relat. Res. 2007, 454, 66–73. [Google Scholar] [CrossRef]
- Miranda, D.L.; Fadale, P.D.; Hulstyn, M.J.; Shalvoy, R.M.; Machan, J.T.; Fleming, B.C. Knee biomechanics during a jump-cut maneuver: Effects of gender and ACL surgery. Med. Sci. Sports Exerc. 2013, 45, 942–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papalia, R.; Franceschi, F.; Tecame, A.; D’Adamio, S.; Maffulli, N.; Denaro, V. Anterior cruciate ligament reconstruction and return to sport activity: Postural control as the key to success. Int. Orthop. 2015, 39, 527–534. [Google Scholar] [CrossRef]
- Bartlett, R. Movement variability and its implications for sports scientists and practitioners: An overview. Int. J. Sports Sci. Coach. 2008, 3, 113–124. [Google Scholar] [CrossRef]
- Hamill, J.; van Emmerik, R.E.; Heiderscheit, B.C.; Li, L. A dynamical systems approach to lower extremity running injuries. Clin. Biomech. 1999, 14, 297–308. [Google Scholar] [CrossRef]
- Kelso, J.A.S. Dynamic Patterns: The Self-Organization of Brain and Behavior; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- DeLeo, A.T.; Dierks, T.A.; Ferber, R.; Davis, I.S. Lower extremity joint coupling during running: A current update. Clin. Biomech. 2004, 19, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Heiderscheit, B.C.; Hamill, J.; van Emmerik, R.E.A. Variability of stride characteristics and joint coordination among individuals with unilateral patellofemoral pain. J. Appl. Biomech. 2002, 18, 110–121. [Google Scholar] [CrossRef]
- Li, L.; van den Bogert, E.C.; Caldwell, G.E.; van Emmerik, R.E.A.; Hamill, J. Coordination patterns of walking and running at similar speed and stride frequency. Hum. Mov. Sci. 1999, 18, 67–85. [Google Scholar] [CrossRef]
- Stergiou, N.; Jensen, J.L.; Bates, B.T.; Scholten, S.D.; Tzetzis, G. A dynamical systems investigation of lower extremity coordination during running over obstacles. Clin. Biomech. 2001, 16, 213–221. [Google Scholar] [CrossRef]
- Pujol, N.; Bohu, Y.; Boisrenoult, P.; Macdes, A.; Beaufils, P. Clinical outcomes of open meniscal repair of horizontal meniscal tears in young patients. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 1530–1533. [Google Scholar] [CrossRef]
- Seo, S.S.; Chung, K.C.; Kim, Y.B. Assessment of validity, reliability and responsiveness of Korean knee injury and osteoarthritis outcome score (KOOS) for the knee injury. J. Korean Orthop. Assoc. 2006, 41, 441–453. [Google Scholar] [CrossRef]
- Matthews, B.; Wilkinson, M.; McEwen, P.; Hazratwala, K.; Doma, K.; Manoharan, V.; McEwen, S. In vivo Arthroscopic temperatures: A comparison between 2 types of radiofrequency ablation systems in arthroscopic anterior cruciate ligament reconstruction—A randomized controlled trial. Arthroscopy 2017, 33, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, A.C.; Lepley, L.K.; Wojtys, E.M.; McLean, S.G.; Palmieri–Smith, R.M. Effects of neuromuscular fatigue on quadriceps strength and activation and knee biomechanics in individuals post–anterior cruciate ligament reconstruction and healthy adults. J. Orthop. Sports Phys. Ther. 2015, 45, 1042–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stergiou, N.; Giakas, G.; Byrne, J.B.; Pomeroy, V. Frequency domain characteristics of ground reaction forces during walking of young and elderly females. Clin. Biomech. 2002, 17, 615–617. [Google Scholar] [CrossRef]
- Tylkowski, C.M.; Simon, S.R.; Mansour, J.M. The Frank Stinchfield Award Paper. Internal rotation gait in spastic cerebral palsy. Hip 1982, 10, 89–125. [Google Scholar]
- Van Emmerik, R.E.A.; Wagenaar, R.C. Effects of walking velocity on relative phase dynamics in the trunk in human walking. J. Biomech. 1996, 29, 1175–1184. [Google Scholar] [CrossRef]
- Ferber, R.; Osternig, L.R.; Woollacott, M.H.; Wasielewski, N.J.; Lee, J.H. Bilateral accommodations to anterior cruciate ligament deficiency and surgery. Clin. Biomech. 2004, 19, 136–144. [Google Scholar] [CrossRef]
- Miller, R.H.; Meardon, S.A.; Derrick, T.R.; Gillette, J.C. Continuous relative phase variability during an exhaustive run in runners with a history of iliotibial band syndrome. J. Appl. Biomech. 2008, 24, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Pohl, M.B.; Buckley, J.G. Changes in foot and shank coupling due to alterations in foot strike pattern during running. Clin. Biomech. 2008, 23, 334–341. [Google Scholar] [CrossRef]
- Sigward, S.M.; Powers, C.M. The influence of gender on knee kinematics, kinetics and muscle activation patterns during side–step cutting. Clin. Biomech. 2006, 21, 41–48. [Google Scholar] [CrossRef]
- Malinzak, R.A.; Colby, S.M.; Kirkendall, D.T.; Yu, B.; Garrett, W.E. A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin. Biomech. 2001, 16, 438–445. [Google Scholar] [CrossRef]
- Key, J. Back Pain-A Movement Problem E-Book: A Clinical Approach Incorporating Relevant Research and Practice; Elsevier Health Sciences: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Giangarra, C.E.; Manske, R.C. Clinical Orthopaedic Rehabilitation: A Team Approach E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Ferber, R.; Davis, I.M.; Williams, D.S., III. Effect of foot orthotics on rearfoot and tibia joint coupling patterns and variability. J. Biomech. 2005, 38, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Kristianslund, E.; Faul, O.; Bahr, R.; Myklebust, G.; Krosshaug, T. Sidestep cutting technique and knee abduction loading: Implications for ACL prevention exercises. Br. J. Sports Med. 2014, 48, 779–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mean ± SD | Age (y) | Height (cm) | Weight (kg) | Period ACLR (mons.) | KOOS Score |
---|---|---|---|---|---|
CG (n = 21) | 24.3 ± 1.7 | 175.0 ± 5.1 | 75.7 ± 7.8 | - | - |
AG (n = 21) | 26.1 ± 4.0 | 177.6 ± 5.2 | 80.2 ± 7.1 | 49.1 ± 32.8 | 92.0 ± 4.9 |
t(p) | −1.86(0.07) | −1.61(0.12) | −1.95(0.06) |
Mean ± SD (Unit: deg) | CRP (Hip–Knee) | CRP (Knee–Ankle) | |||||
---|---|---|---|---|---|---|---|
Sagittal Plane | Frontal Plane | Transverse Plane | Sagittal Plane | Frontal Plane | Transverse Plane | ||
Walking | CG (n = 21) | 70.03 ± 7.21 | 65.70 ± 29.73 | 90.57 ± 17.97 | 97.23 ± 11.29 | 93.78 ± 27.72 | 74.30 ± 24.65 |
AG (n = 21) | 72.61 ± 3.97 | 72.11 ± 25.14 | 96.30 ± 20.24 | 93.98 ± 15.53 | 83.60 ± 28.87 | 77.81 ± 23.52 | |
t(p) | −1.44(0.16) | −0.76(0.46) | −0.97(0.34) | 0.78(0.44) | 1.17(0.25) | −0.47(0.64) | |
Running | CG (n = 21) | 42.87 ± 8.33 | 60.31 ± 28.15 | 62.33 ± 19.81 | 36.85 ± 7.31 | 67.79 ± 21.90 | 82.83 ± 22.80 |
AG (n = 21) | 50.41 ± 9.50 | 61.26 ± 27.64 | 69.64 ± 16.41 | 34.74 ± 7.48 | 74.64 ± 26.23 | 95.39 ± 16.68 | |
t(p) | −2.73(0.01) * | −0.11(0.91) | −1.30(0.20) | 0.93(0.36) | −0.92(0.36) | −2.04(0.04) * | |
Cutting 30° | CG (n = 21) | 35.94 ± 6.78 | 55.96 ± 18.57 | 72.07 ± 15.25 | 29.15 ± 6.32 | 80.43 ± 16.42 | 84.31 ± 14.44 |
AG (n = 21) | 41.87 ± 11.46 | 67.93 ± 20.06 | 72.91 ± 15.63 | 31.90 ± 7.44 | 70.46 ± 17.25 | 90.49 ± 15.00 | |
t(p) | −2.04(0.04) * | −2.01(0.05) | −0.18(0.86) | −1.29(0.20) | 1.92(0.06) | −1.36(0.18) | |
Cutting 60° | CG (n = 21) | 32.49 ± 5.54 | 56.68 ± 18.46 | 61.45 ± 13.92 | 25.60 ± 6.83 | 81.15 ± 14.72 | 87.21 ± 16.09 |
AG (n = 21) | 38.15 ± 7.35 | 62.56 ± 16.25 | 66.30 ± 13.80 | 28.66 ± 7.33 | 71.18 ± 14.48 | 88.57 ± 14.12 | |
t(p) | −2.82(0.01) * | −1.10(0.28) | −1.13(0.26) | −1.39(0.16) | 2.21(0.03) * | −0.29(0.77) |
Mean ± SD (Unit: deg) | CRP Variability (Hip–Knee) | CRP Variability (Knee–Ankle) | |||||
---|---|---|---|---|---|---|---|
Sagittal Plane | Frontal Plane | Transverse Plane | Sagittal Plane | Frontal Plane | Transverse Plane | ||
Walking | CG (n = 21) | 6.10 ± 2.09 | 20.00 ± 8.08 | 23.85 ± 6.59 | 14.26 ± 4.77 | 19.93 ± 8.62 | 31.11 ± 9.74 |
AG (n = 21) | 6.31 ± 2.24 | 20.27 ± 7.09 | 23.93 ± 6.76 | 12.29 ± 3.16 | 21.84 ± 8.75 | 28.59 ± 6.88 | |
t(p) | −0.31(0.76) | −0.12(0.91) | −0.04(0.97) | 1.57(0.12) | −0.71(0.48) | 0.97(0.34) | |
Running | CG (n = 21) | 5.70 ± 2.30 | 18.02 ± 7.54 | 20.61 ± 4.47 | 7.39 ± 2.43 | 17.79 ± 6.61 | 15.56 ± 3.83 |
AG (n = 21) | 6.28 ± 2.39 | 15.01 ± 4.15 | 22.11 ± 8.41 | 8.25 ± 2.29 | 16.28 ± 4.77 | 17.54 ± 7.80 | |
t(p) | −0.80(0.43) | 1.60(0.12) | −0.72(0.48) | −1.18(0.24) | 0.85(0.40) | −1.04(0.30) | |
Cutting 30° | CG (n = 21) | 11.16 ± 3.43 | 32.92 ± 10.03 | 36.44 ± 9.59 | 12.05 ± 3.15 | 37.81 ± 8.06 | 39.93 ± 8.90 |
AG (n = 21) | 10.69 ± 3.27 | 35.62 ± 9.61 | 34.37 ± 6.57 | 11.80 ± 3.73 | 37.93 ± 7.26 | 35.20 ± 9.75 | |
t(p) | 0.46(0.65) | −0.89(0.38) | 0.82(0.42) | 0.23(0.82) | −0.05(0.95) | 1.64(0.10) | |
Cutting 60° | CG (n = 21) | 9.85 ± 2.49 | 33.55 ± 9.16 | 31.29 ± 8.09 | 9.59 ± 2.77 | 40.34 ± 6.87 | 38.87 ± 10.01 |
AG (n = 21) | 7.88 ± 2.15 | 33.49 ± 8.61 | 33.91 ± 7.58 | 8.73 ± 2.35 | 38.80 ± 6.26 | 34.22 ± 9.60 | |
t(p) | 2.74(0.01) * | 0.02(0.98) | −1.08(0.29) | 1.08(0.28) | 0.75(0.45) | 1.53(0.13) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Yoon, S. Quantifying Coordination and Variability in the Lower Extremities after Anterior Cruciate Ligament Reconstruction. Sensors 2021, 21, 652. https://doi.org/10.3390/s21020652
Park S, Yoon S. Quantifying Coordination and Variability in the Lower Extremities after Anterior Cruciate Ligament Reconstruction. Sensors. 2021; 21(2):652. https://doi.org/10.3390/s21020652
Chicago/Turabian StylePark, Sangheon, and Sukhoon Yoon. 2021. "Quantifying Coordination and Variability in the Lower Extremities after Anterior Cruciate Ligament Reconstruction" Sensors 21, no. 2: 652. https://doi.org/10.3390/s21020652
APA StylePark, S., & Yoon, S. (2021). Quantifying Coordination and Variability in the Lower Extremities after Anterior Cruciate Ligament Reconstruction. Sensors, 21(2), 652. https://doi.org/10.3390/s21020652