Technical Proposal for Monitoring Thermal and Mechanical Stresses of a Runway Pavement
Abstract
:1. Introduction
- Flexible pavement is composed of upper asphalt layers: it produces a uniform transmission of vertical stresses, which corresponds to a non-uniform distribution of vertical deformations;
- Rigid pavement is composed of concrete slabs: it produces a non-uniform transmission of vertical stresses, which corresponds to a uniform distribution of vertical deformations.
- To analyze the structural response of the pavement;
- To prepare a pavement management protocol (i.e., PMS);
- To implement the management of the structural monitoring system by setting up a web monitoring system (WMS) with a dedicated app.
2. Materials and Methods
2.1. Asphalt Pavement Verifications
2.1.1. Fatigue Verification
- for bottom-up cracks, where h is the thickness;
- for top-down cracks;
- ;
- where are the voids and bitumen volume, respectively.
2.1.2. Rutting Verification
- where z is the generic depth;
- −0.1039, where h is the thickness;
- 0.0172.
2.1.3. Thermal Rupture Verification
2.2. Concrete Pavement Verifications
Fatigue Verification
2.3. Case Study Sensors
- -
- Very high sampling frequencies with dynamic acquisition of measurements (i.e., deformations, pressures and temperatures);
- -
- Methods of sensors’ installation depending on the pavement type and its temperature during its service life from construction phase;
- -
- Order of magnitude of the expected measurements;
- -
- Reliability of collected data;
- -
- Durability of the instruments.
2.3.1. Thermometers
2.3.2. Strain Gauges
2.3.3. Pressure Cells
3. Case Study
3.1. Data Acquisition System
3.2. Monitoring System Management
3.2.1. Data Processing
3.2.2. Interpretative Models
3.2.3. Alert Thresholds and Management Protocol
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantisani, G.; Di Mascio, P.; Moretti, L. Comparative Life Cycle Assessment of Lighting Systems and Road Pavements in an Italian Twin-Tube Road Tunnel. Sustainability 2018, 10, 4165. [Google Scholar] [CrossRef] [Green Version]
- Cantisani, G.; D’Andrea, A.; Di Mascio, P.; Loprencipe, G. Reliance of pavement texture characteristics on mix-design and compaction process. In 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials; Springer: Dordrecht, The Netherlands, 2016; pp. 271–281. [Google Scholar] [CrossRef]
- Orlando, L.; Cardarelli, E.; Cercato, M.; de Donno, G.; di Giambattista, L. Pavement testing by integrated geophysical methods: Feasibility, resolution and diagnostic potential. J. Appl. Geophys. 2017, 136, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Wesołowski, M.; Iwanowski, P. Evaluation of asphalt concrete airport pavement conditions based on the Airfield Pavement Condition Index (APCI) in scope of flight safety. Aerospace 2020, 7, 78. [Google Scholar] [CrossRef]
- Xue, W.; Wang, L.; Wang, D. A prototype integrated monitoring system for pavement and traffic based on an embedded sensing network. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1380–1390. [Google Scholar] [CrossRef]
- Loprencipe, G.; de Almeida Filho, F.G.V.; de Oliveira, R.H.; Bruno, S. Validation of a Low-Cost Pavement Monitoring Inertial-Based System for Urban Road Networks. Sensors 2021, 21, 3127. [Google Scholar] [CrossRef]
- Korczak, R.; El-Hakim, M.; El Halim, A.A.; Doyle, K.; Wagner, T. A cost-effective maintenance treatment for improving airfield pavement friction. In Proceedings of the 2014 Conference and Exhibition of the Transportation Association of Canada//Transport, Montreal, QC, Canada, 28 September–1 October 2014; Volume 1. [Google Scholar]
- Loprencipe, G.; Zoccali, P. Comparison of methods for evaluating airport pavement roughness. Int. J. Pavement Eng. 2019, 20, 782–791. [Google Scholar] [CrossRef]
- FAA. Guidelines and Procedures for Measuring Airfield Pavement Roughness; AC No: 150/5380-9; US Department of Transportation: Washington, DC, USA, 2009; pp. 1–4.
- ICAO. ICAO 9157 Aerodrome Design Manual—Part 3—Pavements; ICAO: Montreal, QC, Canada, 1983. [Google Scholar]
- Leonelli, F.; di Mascio, P.; Germinario, A.; Picarella, F.; Moretti, L.; Cassata, M.; de Rubeis, A. Laboratory and on-site tests for rapid runway repair. Appl. Sci. 2017, 7, 1192. [Google Scholar] [CrossRef] [Green Version]
- Gendreau, M.; Soriano, P. Airport Pavement Management Systems: An Appraisal of Existing Methodologies. Transp. Res. Part A 1998, 32, 197–214. [Google Scholar] [CrossRef]
- Direzione, E.; Infrastrutture, C.; Aereo, S. Linee Guida Airport Pavement Management System; Ente Nazionale per l’Aviazione Civile: Rome, Italy, 2015; pp. 1–54. [Google Scholar]
- Di Mascio, P.; Moretti, L. Implementation of a pavement management system for maintenance and rehabilitation of airport surfaces. Case Stud. Constr. Mater. 2019, 11, e00251. [Google Scholar] [CrossRef]
- Di Mascio, P.; Cosciotti, M.; Fusco, R.; Moretti, L. Runway veer-off risk analysis: An international airport case study. Sustainability 2020, 12, 9360. [Google Scholar] [CrossRef]
- Moretti, L.; Cantisani, G.; Caro, S. Airport veer-off risk assessment: An italian case study. ARPN J. Eng. Appl. Sci. 2017, 12, 900–912. [Google Scholar]
- Moretti, L.; Cantisani, G.; Di Mascio, P.; Nichele, S.; Caro, S. A runway veer-off risk assessment based on frequency model: Part I. probability analysis. In Transport Infrastructure and Systems; CRC Press: Boca Raton, FL, USA, 2017; pp. 512–522. [Google Scholar] [CrossRef]
- Moretti, L.; Cantisani, G.; Di Mascio, P.; Nichele, S.; Caro, S. A runway veer-off risk assessment based on frequency model: Part II. risk analysis. In Transport Infrastructure and Systems; CRC Press: Boca Raton, FL, USA; pp. 523–528. [CrossRef]
- Ismail, N.; Ismail, A.; Atiq, R.; Rahmat, O.K. Development of Expert System for Airport Pavement Maintenance and Rehabilitation. Sci. Res. 2009, 35, 121–129. [Google Scholar]
- Di Mascio, P.; Antonini, A.; Narciso, P.; Greto, A.; Cipriani, M.; Moretti, L. Proposal and Implementation of a Heliport Pavement Management System: Technical and Economic Comparison of Maintenance Strategies. Sustainability 2021, 13, 9201. [Google Scholar] [CrossRef]
- Freeman, T.J.; Borowiec, J.D.; Wilson, B.; Arabali, P.; Sakhaeifar, M. Draft Final Guidebook; Texas A&M Transportation Institute: College Station, Mexico, 2016. [Google Scholar]
- Ragnoli, A.; de Blasiis, M.R.; di Benedetto, A. Pavement distress detection methods: A review. Infrastructures 2018, 3, 58. [Google Scholar] [CrossRef] [Green Version]
- Ayers, M.; Cackler, T.; Fick, G.; Harrington, D.; Schwartz, D.; Smith, K.; Snyder, M.B.; van dam, T.; Iowa State University; Federal Highway Administration. Guide for Concrete Pavement Distress Assessments and Solutions: Identification, Causes, Prevention, and Repair; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2018.
- Donato, A. La Valutazione delle Pavimentazioni Flessibili. Modelli di Backcalculation e Algoritmi Genetici; Il Gabbiano di Maria Froncillo Nicosia: Messina, Italy, 2013; ISBN 9788896293232. [Google Scholar]
- Gadiya, A.; Bhor, S.; Parchure, P.; Bafna, S. Evaluation of Rigid Pavements By Deflection Approach. Int. J. Res. Eng. Technol. 2015, 4, 551–556. [Google Scholar] [CrossRef]
- White, G. Use of falling weight deflectometer for airport pavements. In Proceedings of the 5th GeoChina International Conference 2018—Civil Infrastructures Confronting Severe Weathers and Climate Changes: From Failure to Sustainability, Hangzhou, China, 23–25 July 2018. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, Q.; Ling, J. Comparison of FWD and Benkelman Beam in Evaluation of Pavement Structure Capacity. Paving Mater. Pavement Anal. 2010, 3, 405–411. [Google Scholar] [CrossRef]
- Park, D.; Buch, N.; Chatti, K. Effective layer temperature prediction model and temperature correction via falling weight deflectometer deflections. Transp. Res. Rec. J. Transp. Res. Board 2001, 1764, 97–111. [Google Scholar] [CrossRef]
- Sharma, S.; Das, A. Backcalculation of pavement layer moduli from falling weight deflectometer data using an artificial neural network. Can. J. Civ. Eng. 2008, 35, 57–66. [Google Scholar] [CrossRef]
- Hadidi, R.; Gucunski, N. Comparative study of static and dynamic falling weight deflectometer back-calculations using probabilistic approach. J. Transp. Eng. 2010, 136, 196–204. [Google Scholar] [CrossRef]
- Santamarina, J.C.; Fratta, D. Discrete Signals and Inverse Problems; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 9780470021873. [Google Scholar]
- Barman, M.; Pandey, B.B. Backcalculation of Layet Moduli of Concrete pavement by Falling Weight Deflectometer; Indian Highways: New Delhi, India, 2009. [Google Scholar]
- Xue, W.; Wang, D.; Wang, L. A review and perspective about pavement monitoring. Int. J. Pavement Res. Technol. 2012, 5, 295–302. [Google Scholar]
- Bahrani, N.; Blanc, J.; Hornych, P.; Menant, F. Alternate method of pavement assessment using geophones and accelerometers for measuring the pavement response. Infrastructures 2020, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Bahrani, N.; Blanc, J.; Hornych, P.; Menant, F. Evaluation of the use of geophones and accelerometers for monitoring pavement deflections, using accelerated pavement tests. In Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2020; Volume 96, pp. 526–535. [Google Scholar]
- Xue, W.; Wang, L.; Wang, D.; Druta, C. Pavement Health Monitoring System Based on an Embedded Sensing Network. J. Mater. Civ. Eng. 2014, 26, 04014072. [Google Scholar] [CrossRef]
- Cafiso, S.; di Graziano, A.; Fedele, R.; Marchetta, V.; Praticò, F. Sensor-based pavement diagnostic using acoustic signature for moduli estimation. Int. J. Pavement Res. Technol. 2020, 13, 573–580. [Google Scholar] [CrossRef]
- Fedele, R.; Pratico, F.G.; Carotenuto, R.; della Corte, F.G. Instrumented infrastructures for damage detection and management. In Proceedings of the 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2017, Napoli, Italy, 26–28 June 2017; pp. 526–531. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, P.; Jiang, L. Optical Fiber Sensor Based In-Field Structural Performance Monitoring of Multilayered Asphalt Pavement. J. Light. Technol. 2018, 36, 3624–3632. [Google Scholar] [CrossRef]
- Zhou, Z.; He, J.; Ou, J.; Xiao, H. A Novel Self-healing Optical Fiber Network. Appl. Mech. Mater. 2013, 330, 553–560. [Google Scholar] [CrossRef]
- Murayama, H.; Kageyama, K.; Uzawa, K. Strain monitoring of a single-lap joint with embedded fiber-optic distributed sensors. Struct. Health Monit. 2011, 11, 325–344. [Google Scholar] [CrossRef]
- Oubahdou, Y.; Reynaud, P.; Petit, C.; Millien, A.; Dopeux, J.; Metrope, M.; Picoux, B.; Gerbaud, C.; Tautou, R. Full scale testing with the mobile load simulator: Advanced measurements related to pavement behavior and surface layer damage. In Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2020; Volume 96, pp. 467–475. [Google Scholar]
- Yang, S.; Ceylan, H.; Gopalakrishnan, K.; Kim, S. Smart airport pavement instrumentation and health monitoring. In Proceedings of the 2014 FAA Worldwide Airport Technology Transfer Conference, Galloway, NJ, USA, 5–7 August 2014. [Google Scholar]
- Abdelmonem, A.H.; Shaw, R.K. Availability and performance self-healing communications networks and their impact on IBM SNA session performance, availability and reliability. In Proceedings of the 2nd Workshop on Future Trends of Distributed Computing Systems, Cairo, Egypt, 30 September–2 October 1990. [Google Scholar]
- Manosalvas-Paredes, M.; Roberts, R.; Barriera, M.; Mantalovas, K. Towards more sustainable pavement management practices using embedded sensor technologies. Infrastructures 2020, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Bahrani, N.; Blanc, J.; Hornych, P.; Menant, F. Pavement instrumentation for condition assessment using efficient sensing solutions. In International Conference on Smart Infrastructure and Construction 2019, ICSIC 2019: Driving Data-Informed Decision-Making; ICE Publishing: London, UK, 2019; pp. 471–480. [Google Scholar]
- Babashamsi, P.; Md Yusoff, N.I.; Ceylan, H.; Md Nor, N.G.; Jenatabadi, H.S.; Bahrani, N.; Blanc, J.; Hornych, P.; Menant, F.; Barman, M.; et al. Health monitoring of pavement systems using smart sensing technologies. Int. J. Pavement Eng. 2018, 19, 1–8. [Google Scholar] [CrossRef]
- Xiao, J.; Zou, X.; Xu, W. ePave: A self-powered wireless sensor for smart and autonomous pavement. Sensors 2017, 17, 2207. [Google Scholar] [CrossRef]
- Lee, X.; Hovan, M.; King, R.; Dong, M.; Hayhoe, G.F. Runway instrumentation at Denver international airport development of database. In Proceedings of the Aircraft/Pavement Technology in the Midst of Change, Seattle, WA, USA, 17–20 August 1997; pp. 348–362. [Google Scholar]
- Hernandez, J.A.; Al-Qadi, I.; de Beer, M. Impact of tire loading and tire pressure on measured 3d contact stresses. In Proceedings of the 2013 Airfield & Highway Pavement Conference, Los Angeles, CA, USA, 9–12 June 2013; pp. 551–560. [Google Scholar] [CrossRef] [Green Version]
- Al-Qadi, I.L.; Portas, S.; Coni, M.; Lahouar, S. Runway instrumentation and response measurements. Transp. Res. Rec. 2010, 2153, 162–169. [Google Scholar] [CrossRef]
- Wang, H.; Al-Qadi, I.L.; Portas, S.; Coni, M. Three-dimensional finite element modeling of instrumented airport runway pavement responses. Transp. Res. Rec. 2013, 2367, 76–83. [Google Scholar] [CrossRef]
- Hernandez, J.A.; Gamez, A.; Al-Qadi, I. Domain analysis for airfield pavement: Moving forward from point responses. In Proceedings of the 10th International Conference on the Bearing Capacity of Roads, Railways and Airfields, Athens, Greece, 28–30 June 2017; pp. 1693–1700. [Google Scholar]
- Ferretti, E. Satisfying boundary conditions in homogeneous, linear-elastic and isotropic half-spaces subjected to loads perpendicular to the surface: Distributed loads on adjacent contact areas. Curved Layer. Struct. 2019, 6, 11–29. [Google Scholar] [CrossRef]
- Burmister, D.M. The general theory of stresses and displacements in layered systems. I. J. Appl. Phys. 1945, 16, 89–94. [Google Scholar] [CrossRef]
- Meng, S.; Jiao, J. The comparison of two airport rigid pavement load stresses. Adv. Mater. Res. 2013, 645, 487–491. [Google Scholar] [CrossRef]
- Bonin, G.; Cantisani, G.; Loprencipe, G.; Ranzo, A. Dynamic effects in concrete airport pavement joints. Ind. Ital. Cem. 2007, 77, 590–607. [Google Scholar]
- Tautou, R.; Picoux, B.; Petit, C. Temperature Influence in a Dynamic Viscoelastic Modeling of a Pavement Structure. J. Transp. Eng. Part B Pavements 2017, 143, 04017012. [Google Scholar] [CrossRef]
- U.S. Department of Transportation Federal Aviation Administration. Airport Pavement Design and Evaluation Advisory Circular; Area; U.S. Department of Transportation Federal Aviation Administration: Washingotn, DC, USA, 2016; pp. 1–4.
- Li, S.; Tang, L.; Yao, K. Comparison of Two Typical Professional Programs for Mechanical Analysis of Interlayer Bonding of Asphalt Pavement Structure. Adv. Mater. Sci. Eng. 2020, 2020, 5850670. [Google Scholar] [CrossRef] [PubMed]
- Zulkifili, N.H.; Sutanto, M.H. The Influence of Bonding between Layers on Pavement Performance, a Case Study of Malaysian Road. E3S Web Conf. 2018, 65, 4–11. [Google Scholar] [CrossRef]
- Jayarathna, K.A.R.N.; Premarathne, R.P.P.K.; Mampearachchi, W.K. Validation of mechanistic-empirical pavement design approach for flexible pavement design. In Proceedings of the 6th International Moratuwa Engineering Research Conference, Moratuwa, Sri Lanka, 27–30 July 2020; pp. 395–400. [Google Scholar] [CrossRef]
- Sri Atmaja, P.; Rosyidia, A.H.; Taibb, N.A.M.; Jamaludinc, A.A.; Zubair, A.; Memond, N.I.M.; Yusoffb, M.R.H. Determination of deflection basin using pavement modelling computer programs and finite element method. J. Teknol. 2020, 82, 8. [Google Scholar]
- Jafaraghaei, U. 2D and 3D pavement analysis using the ABAQUS program and comparing the results with the KENLAYER and MICHPAVE programs. In Proceedings of the International Conference on Recent Progresses in Civil Engineering, Shomal University, Amol, Iran, 15–16 November 2017. [Google Scholar]
- Alkaissi, Z.A. Effect of high temperature and traffic loading on rutting performance of flexible pavement. J. King Saud Univ. Eng. Sci. 2020, 32, 1–4. [Google Scholar] [CrossRef]
- Elnashar, G.; Bhat, R.B.; Sedaghati, R. Modeling pavement damage and predicting fatigue cracking of flexible pavements based on a combination of deterministic method with stochastic approach using Miner’s hypothesis. SN Appl. Sci. 2019, 1, 229. [Google Scholar] [CrossRef] [Green Version]
- NCHRP. Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, Appendix ll-1: Calibration of Fatigue Cracking Models for Flexible Pavements; Transportation Research Board, National Research Council: Washington, DC, USA, 2004; pp. 1–311. [Google Scholar]
- Ling, X.; Li, P.; Zhang, F.; Zhao, Y.; Li, Y.; An, L. Permanent Deformation Characteristics of Coarse Grained Subgrade Soils under Train-Induced Repeated Load. Adv. Mater. Sci. Eng. 2017, 2017, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.H. Pavement Analysis and Design; Pearson Education: London, UK, 2004; p. 775. [Google Scholar]
- Witczak, M.W.; El-Basyouny, M.M. 2002 Design Guide: Design of New and Rehabilitated Pavement Structures. Appendix A: Calibration of Permamnent Deformation Models For Flexible Pavements; NCHRP: Washingotn, DC, USA, 2004; pp. 2–92. [Google Scholar]
- Heukelom, W. Observations on the rheology and fracture of bitumens and asphalt mixes. Assoc. Asph. Paving Technol. Proc. 1966, 35, 358–399. [Google Scholar]
- Di Mascio, P. Concrete pavements and interlocking concrete paving blocks for low-volume roads. Ind. Ital. Cem. 2002, 2, 968–991. [Google Scholar]
- Westergaard, H.M. Analysis of stresses in concrete pavements due to variations of temperature. Highw. Res. Board Proc. 1927, 6, 201–215. [Google Scholar]
- Darter, M.I. Design of a Zero-Maintenance Plain Jointed Concrete Pavement, Volume One-Development of Design Procedures; The National Academies of Sciences, Engineering, and Medicine: Washingotn, DC, USA, 1977. [Google Scholar]
- Ker, H.W.; Lee, Y.H.; Lin, C.H. Prediction models for transverse cracking of jointed concrete pavements: Development with long-term pavement performance database. Transp. Res. Rec. 2008, 20, 20–31. [Google Scholar] [CrossRef]
- Lockheed, M. C-130J Super Hercules: Whatever the Situation, We’ll Be There 32; Aeronautics Company: Marietta, GA, USA, 2013. [Google Scholar]
- HoSang, V. Field Survey and Analysis of Aircraft Distribution on Airport Pavements. Transp. Res. Board Spec. Rep. 1978, 175, 84–87. [Google Scholar]
Material | Parameter | Value | Unit |
---|---|---|---|
asphalt–wearing course | stiffness modulus, 25 °C | 3600 | MPa |
indirect tensile strength | 1.92 | MPa | |
asphalt–binder course | stiffness modulus, 25 °C | 3000 | MPa |
indirect tensile strength | 1.84 | MPa | |
asphalt–base course | stiffness modulus, 25 °C | 2000 | MPa |
indirect tensile strength | 1.75 | MPa | |
cement treated mix | cylindrical characteristic compressive strength, 7 days | 3–7 | MPa |
indirect tensile resistance, 7 days | 0.45–0.85 | MPa | |
granular mix | liquid limit | <25 | % |
plasticity index | 0 | % |
Material | Parameter | Value | Unit |
---|---|---|---|
concrete | cube characteristic compressive strength, 28 days | ≥45 | MPa |
modulus of rupture, 28 days | ≥4.1 | MPa | |
cement treated mix | cylindrical characteristic compressive strength, 7 days | 3–7 | MPa |
indirect tensile resistance, 7 days | 0.45–0.85 | MPa | |
granular mix | liquid limit | <25 | % |
plasticity index | 0 | % |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruno, S.; Del Serrone, G.; Di Mascio, P.; Loprencipe, G.; Ricci, E.; Moretti, L. Technical Proposal for Monitoring Thermal and Mechanical Stresses of a Runway Pavement. Sensors 2021, 21, 6797. https://doi.org/10.3390/s21206797
Bruno S, Del Serrone G, Di Mascio P, Loprencipe G, Ricci E, Moretti L. Technical Proposal for Monitoring Thermal and Mechanical Stresses of a Runway Pavement. Sensors. 2021; 21(20):6797. https://doi.org/10.3390/s21206797
Chicago/Turabian StyleBruno, Salvatore, Giulia Del Serrone, Paola Di Mascio, Giuseppe Loprencipe, Eugenio Ricci, and Laura Moretti. 2021. "Technical Proposal for Monitoring Thermal and Mechanical Stresses of a Runway Pavement" Sensors 21, no. 20: 6797. https://doi.org/10.3390/s21206797
APA StyleBruno, S., Del Serrone, G., Di Mascio, P., Loprencipe, G., Ricci, E., & Moretti, L. (2021). Technical Proposal for Monitoring Thermal and Mechanical Stresses of a Runway Pavement. Sensors, 21(20), 6797. https://doi.org/10.3390/s21206797