In-Line Detection with Microfluidic Bulk Acoustic Wave Resonator Gas Sensor for Gas Chromatography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Fabrication
2.2. Gas Sensing Experiments
2.3. GC–mFBAR–FID System
3. Results and Discussion
3.1. Gas Sensing Performance
3.2. Flow Profile in mFBAR Sensor
3.3. In-Line Detection of mFBAR Sensor with FID
3.4. Application in GC–GC Separation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasreddine, R.; Person, V.; Serra, C.A.; Schoemaecker, C.; Le Calvé, S. Portable novel micro-device for BTEX real-time monitoring: Assessment during a field campaign in a low consumption energy junior high school classroom. Atmos. Environ. 2016, 126, 211–217. [Google Scholar] [CrossRef]
- Aggio, R.B.; de Lacy Costello, B.; White, P.; Khalid, T.; Ratcliffe, N.M.; Persad, R.; Probert, C.S. The use of a gas chromatography-sensor system combined with advanced statistical methods, towards the diagnosis of urological malignancies. J. Breath Res. 2016, 10, 017106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frink, L.A.; Armstrong, D.W. Determination of Trace Water Content in Petroleum and Petroleum Products. Anal. Chem. 2016, 88, 8194–8201. [Google Scholar] [CrossRef]
- Zampolli, S.; Elmi, I.; Mancarella, F.; Betti, P.; Dalcanale, E.; Cardinali, G.C.; Severi, M. Real-time monitoring of sub-ppb concentrations of aromatic volatiles with a MEMS-enabled miniaturized gas-chromatograph. Sens. Actuators B 2009, 141, 322–328. [Google Scholar] [CrossRef]
- Rastrello, F.; Placidi, P.; Scorzoni, A.; Cozzani, E.; Messina, M.; Elmi, I.; Zampolli, S.; Cardinali, G.C. Thermal Conductivity Detector for Gas Chromatography: Very Wide Gain Range Acquisition System and Experimental Measurements. IEEE Trans. Instrum. Meas. 2013, 62, 974–981. [Google Scholar] [CrossRef]
- Sarafraz-Yazdi, A.; Amiri, A.H.; Es’haghi, Z. BTEX determination in water matrices using HF-LPME with gas chromatography-flame ionization detector. Chemosphere 2008, 71, 671–676. [Google Scholar] [CrossRef]
- Schug, K.A.; Sawicki, I.; Carlton, D.D., Jr.; Fan, H.; McNair, H.M.; Nimmo, J.P.; Kroll, P.; Smuts, J.; Walsh, P.; Harrison, D. Vacuum ultraviolet detector for gas chromatography. Anal. Chem. 2014, 86, 8329–8335. [Google Scholar] [CrossRef]
- Grosshans, S.; Rudt, M.; Sanden, A.; Brestrich, N.; Morgenstern, J.; Heissler, S.; Hubbuch, J. In-line Fourier-transform infrared spectroscopy as a versatile process analytical technology for preparative protein chromatography. J. Chromatogr. A 2018, 1547, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Khaing Oo, M.K.; Reddy, K.; Gianchandani, Y.B.; Schultz, J.C.; Appel, H.M.; Fan, X. Adaptive two-dimensional microgas chromatography. Anal. Chem. 2012, 84, 4214–4220. [Google Scholar] [CrossRef]
- Liu, J.; Seo, J.H.; Li, Y.; Chen, D.; Kurabayashi, K.; Fan, X. Smart multi-channel two-dimensional micro-gas chromatography for rapid workplace hazardous volatile organic compounds measurement. Lab Chip 2013, 13, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Seo, J.H.; Liu, J.; Kurabayashi, K.; Fan, X. Smart three-dimensional gas chromatography. Anal. Chem. 2013, 85, 6871–6875. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Zhou, M.; Zhu, H.; Nidetz, R.; Kurabayashi, K.; Fan, X. In situ calibration of micro-photoionization detectors in a multi-dimensional micro-gas chromatography system. Analyst 2016, 141, 4100–4107. [Google Scholar] [CrossRef]
- Gregis, G.; Sanchez, J.-B.; Bezverkhyy, I.; Guy, W.; Berger, F.; Fierro, V.; Bellat, J.-P.; Celzard, A. Detection and quantification of lung cancer biomarkers by a micro-analytical device using a single metal oxide-based gas sensor. Sens. Actuators B 2018, 255, 391–400. [Google Scholar] [CrossRef]
- Kim, S.K.; Chang, H.; Zellers, E.T. Microfabricated gas chromatograph for the selective determination of trichloroethylene vapor at sub-parts-per-billion concentrations in complex mixtures. Anal. Chem. 2011, 83, 7198–7206. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Gianchandani, Y.B. A fully electronic microfabricated gas chromatograph with complementary capacitive detectors for indoor pollutants. Microsyst. Nanoeng. 2016, 2, 15049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.; Tsow, F.; Wang, D.; Tao, N. Real-time Simutaneous Separation and Detection of Chemicals using Integrated Micro Column and Surface Plasmon Resonance Imaging Micro-GC. IEEE Sens. J. 2018, 18, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; Liu, J.; Oo, M.K.K.; Fan, X. Integrated Separation Columns and Fabry-Perot Sensors for Microgas Chromatography Systems. J. Microelectromech. Syst. 2013, 22, 1174–1179. [Google Scholar] [CrossRef]
- Scholten, K.; Collin, W.R.; Fan, X.; Zellers, E.T. Nanoparticle-coated micro-optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis. Nanoscale 2015, 7, 9282–9289. [Google Scholar] [CrossRef]
- Martin, O.; Gouttenoire, V.; Villard, P.; Arcamone, J.; Petitjean, M.; Billiot, G.; Philippe, J.; Puget, P.; Andreucci, P.; Ricoul, F.; et al. Modeling and design of a fully integrated gas analyzer using a μGC and NEMS sensors. Sens. Actuators B 2014, 194, 220–228. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.; Howard, D.J.; Frye-Mason, G.; Thompson, A.K.; Ja, S.-J.; Wang, S.-K.; Bai, M.; Taub, H.; Almasri, M. Fabry−Pérot cavity sensors for multipoint on-column micro gas chromatography detection. Anal. Chem. 2010, 82, 4370–4375. [Google Scholar] [CrossRef]
- Reddy, K.; Guo, Y.; Liu, J.; Lee, W.; Khaing Oo, M.K.; Fan, X. On-chip Fabry–Pérot interferometric sensors for micro-gas chromatography detection. Sens. Actuators B 2011, 159, 60–65. [Google Scholar] [CrossRef]
- Li, M.; Myers, E.B.; Tang, H.X.; Aldridge, S.J.; McCaig, H.C.; Whiting, J.J.; Simonson, R.J.; Lewis, N.S.; Roukes, M.L. Nanoelectromechanical resonator arrays for ultrafast, gas-phase chromatographic chemical analysis. Nano Lett. 2010, 10, 3899–3903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benz, M.; Benz, L.; Patel, S.V. High temperature mass detection using a carbon nanotube bilayer modified quartz crystal microbalance as a GC detector. Anal. Chem. 2015, 87, 2779–2787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, S.Y. Fast gas chromatography–surface acoustic wave sensor: An effective tool for discrimination and quality control of Lavandula species. Sens. Actuators B 2013, 182, 223–231. [Google Scholar] [CrossRef]
- Le, P.R.; Manginell, P.; Adkins, D.R.; Kottenstette, R.J.; Wheeler, D.R.; Sokolowski, S.S.; Trudell, D.E.; Byrnes, J.E.; Okandan, M.; Bauer, J.M.; et al. Recent advancements in the gas-phase MicroChemLab. IEEE Sens. J. 2006, 6, 784–795. [Google Scholar] [CrossRef]
- Whiting, J.J.; Lu, C.-J.; Zellers, E.T.; Sacks, R.D. A portable, high-speed, vacuum-outlet GC vapor analyzer employing air as carrier gas and surface acoustic wave detection. Anal. Chem. 2001, 73, 4668–4675. [Google Scholar] [CrossRef]
- Lu, C.J.; Jin, C.; Zellers, E.T. Chamber evaluation of a portable GC with tunable retention and microsensor-array detection for indoor air quality monitoring. J. Environ. Monit. 2006, 8, 270–278. [Google Scholar]
- Alonso Sobrado, L.; Loriau, M.; Junca, S.; Tremaudant, C.; Puget, P.; Colinet, E.; Randon, J. Characterization of Nano-Gravimetric-Detector Response and Application to Petroleum Fluids up to C34. Anal. Chem. 2020, 92, 15845–15853. [Google Scholar] [CrossRef]
- Benetti, M.; Cannatà, D.; Di Pietrantonio, F.; Foglietti, V.; Verona, E. Microbalance chemical sensor based on thin-film bulk acoustic wave resonators. Appl. Phys. Lett. 2005, 87, 173504. [Google Scholar] [CrossRef]
- Rey-Mermet, S.; Lanz, R.; Muralt, P. Bulk acoustic wave resonator operating at 8GHz for gravimetric sensing of organic films. Sens. Actuators B 2006, 114, 681–686. [Google Scholar] [CrossRef]
- Chen, D.; Xu, Y.; Wang, J.; Zhang, L. Nerve gas sensor using film bulk acoustic resonator modified with a self-assembled Cu2+/11-mercaptoundecanoic acid bilayer. Sens. Actuators B 2010, 150, 483–486. [Google Scholar] [CrossRef]
- Chen, D.; Wang, J.-j.; Liu, Q.-x.; Xu, Y.; Li, D.-h.; Liu, Y.-j. Highly sensitive ZnO thin film bulk acoustic resonator for hydrogen detection. J. Micromech. Microeng. 2011, 21, 115018. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Fang, Z.; Liu, Z.; Zhu, Y.; Du, L. High-performance FBAR humidity sensor based on the PI film as the multifunctional layer. Sens. Actuators B 2020, 308, 127694. [Google Scholar] [CrossRef]
- Hu, J.; Qu, H.; Chang, Y.; Pang, W.; Zhang, Q.; Liu, J.; Duan, X. Miniaturized polymer coated film bulk acoustic wave resonator sensor array for quantitative gas chromatographic analysis. Sens. Actuators B 2018, 274, 419–426. [Google Scholar] [CrossRef]
- Wang, Y.; Ao, C.; Hui, Z.; Yan, X.; Hu, Z.; Chang, Y.; Qu, H.; Duan, X.; Pang, W. Film bulk acoustic resonator based gas sensor: A sensitive detector for gas chromatography. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Yu, Y.; Chang, Y.; Tang, N.; Qu, H.; Wang, Y.; Pang, W.; Zhang, H.; Zhang, D.; et al. Tuning the resonant frequency of resonators using molecular surface self-assembly approach. ACS Appl. Mater. Interfaces 2015, 7, 950–958. [Google Scholar] [CrossRef]
- Zhang, H.; Kim, E.S. Micromachined acoustic resonant mass sensor. J. Microelectromech. Syst. 2005, 14, 699–706. [Google Scholar] [CrossRef]
- Vogt, B.D.; Lin, E.K.; Wu, W.; White, C.C. Effect of film thickness on the validity of the Sauerbrey equation for hydrated polyelectrolyte films. J. Phys. Chem. B 2004, 108, 12685–12690. [Google Scholar] [CrossRef]
- Grate, J.W.; Snow, A.; Ballantine, D.S.; Wohltjen, H.; Abraham, M.H.; McGill, R.A.; Sasson, P. Determination of partition coefficients from surface acoustic wave vapor sensor responses and correlation with gas-liquid chromatographic partition coefficients. Anal. Chem. 1988, 60, 869–875. [Google Scholar] [CrossRef]
- Hu, J.; Qu, H.; Guo, W.; Chang, Y.; Pang, W.; Duan, X. Film bulk acoustic wave resonator for trace chemical warfare agents simulants detection in micro chromatography. In Proceedings of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019. [Google Scholar] [CrossRef]
- Reid, C.R.; Thomas, K.M. Adsorption kinetics and size exclusion properties of probe molecules for the selective porosity in a carbon molecular sieve used for air separation. J. Phys. Chem. B 2001, 105, 10619–10629. [Google Scholar] [CrossRef]
Device | PEI—Coated FBAR | Uncoated FBAR | ||
---|---|---|---|---|
Parameters | Sensitivity, kHz ppm−1 | LOD, ppm | Sensitivity, kHz ppm−1 | LOD, ppm |
Ethanol | 0.840 | 2.856 | 0.551 | 4.356 |
Acetone | 1.095 | 2.192 | 0.870 | 2.759 |
Heptane | 2.738 | 0.877 | 2.500 | 0.960 |
Toluene | 1.983 | 1.210 | 1.791 | 1.340 |
DMMP | 178.728 | 0.013 | 60.313 | 0.040 |
Vapors | Ethanol | Acetone | Toluene | Heptane | DMMP | MS |
---|---|---|---|---|---|---|
S (107) | 2.70 | 1.60 | 1.48 | 1.11 | 2.91 | 2.37 |
Hz (A·s)−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Qu, H.; Pang, W.; Duan, X. In-Line Detection with Microfluidic Bulk Acoustic Wave Resonator Gas Sensor for Gas Chromatography. Sensors 2021, 21, 6800. https://doi.org/10.3390/s21206800
Hu J, Qu H, Pang W, Duan X. In-Line Detection with Microfluidic Bulk Acoustic Wave Resonator Gas Sensor for Gas Chromatography. Sensors. 2021; 21(20):6800. https://doi.org/10.3390/s21206800
Chicago/Turabian StyleHu, Jizhou, Hemi Qu, Wei Pang, and Xuexin Duan. 2021. "In-Line Detection with Microfluidic Bulk Acoustic Wave Resonator Gas Sensor for Gas Chromatography" Sensors 21, no. 20: 6800. https://doi.org/10.3390/s21206800
APA StyleHu, J., Qu, H., Pang, W., & Duan, X. (2021). In-Line Detection with Microfluidic Bulk Acoustic Wave Resonator Gas Sensor for Gas Chromatography. Sensors, 21(20), 6800. https://doi.org/10.3390/s21206800