Embedded Transdermal Alcohol Detection via a Finger Using SnO2 Gas Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. MEMS-Based Microsensor Platforms
2.2. Material Deposition
2.3. Material Characterization Techniques
2.4. Gas Sensor Measurement Calibration System
2.5. Transdermal Alcohol Sensing System Set Up
2.6. DRAGER 6820 Certified Breathalyzer
3. Results and Discussion
3.1. Thin Film Realization and Characterization
3.2. Gas Sensing Results and Discussion
3.2.1. Sensor Calibration Results
3.2.2. Gas Sensing Mechanism
3.2.3. Real Time Transdermal Alcohol Detection Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boffetta, P.; Hashibe, M. Alcohol and cancer. Lancet Oncol. 2006, 7, 149–156. [Google Scholar] [CrossRef]
- Cargiulo, T. Understanding the health impact of alcohol dependence. Am. J. Health Pharm. 2007, 64, S5–S11. [Google Scholar] [CrossRef]
- Saitz, R.; Ghali, W.A.; Moskowitz, M.A. The Impact of Alcohol-Related Diagnoses on Pneumonia Outcomes. Arch. Intern. Med. 1997, 157, 1446–1452. [Google Scholar] [CrossRef]
- Jones, L.; Bates, G.; McCoy, E.; Bellis, M.A. Relationship between alcohol-attributable disease and socioeconomic status, and the role of alcohol consumption in this relationship: A systematic review and meta-analysis. BMC Public Health 2015, 15, 400. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P.; Padhi, P.K.; Narayan, J.; Singh, A.; Pati, G.K.; Nath, P.; Parida, P.K.; Mishra, S. Socioeconomic impact of alcohol in patients with alcoholic liver disease in eastern India. Indian J. Gastroenterol. 2016, 35, 419–424. [Google Scholar] [CrossRef]
- Bendtsen, P.; Hultberg, J.; Carlsson, M.; Jones, A.W. Monitoring ethanol exposure in a clinical setting by analysis of blood, breath, saliva, and urine. Alcohol. Clin. Exp. Res. 1999, 23, 1446–1451. [Google Scholar] [CrossRef]
- Bates, M.E.; Brick, J.; White, H.R. The correspondence between saliva and breath estimates of blood alcohol concentration: Advantages and limitations of the saliva method. J. Stud. Alcohol 1993, 54, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Fosnight, A.M.; Moran, B.L.; Medvedev, I.R. Chemical analysis of exhaled human breath using a terahertz spectroscopic approach. Appl. Phys. Lett. 2013, 103, 133703. [Google Scholar] [CrossRef]
- Bertholet, N.; Winter, M.R.; Cheng, D.M.; Samet, J.H.; Saitz, R. How Accurate Are Blood (or Breath) Tests for Identifying Self-Reported Heavy Drinking Among People with Alcohol Dependence? Alcohol Alcohol. 2014, 49, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Thungon, P.D.; Kakoti, A.; Ngashangva, L.; Goswami, P. Advances in developing rapid, reliable and portable detection systems for alcohol. Biosens. Bioelectron. 2017, 97, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Hlastala, M.P. The alcohol breath test—A review. J. Appl. Physiol. 1998, 84, 401–408. [Google Scholar] [CrossRef]
- Lawson, B.; Aguir, K.; Fiorido, T.; Martini-Laithier, V.; Bouchakour, R.; Burtey, S.; Reynard-Carette, C.; Bendahan, M. Skin alcohol perspiration measurements using MOX sensors. Sens. Actuators B Chem. 2019, 280, 306–312. [Google Scholar] [CrossRef]
- Jones, A.W. How Breathing Technique Can Influence the Results of Breath-Alcohol Analysis. Med. Sci. Law 1982, 22, 275–280. [Google Scholar] [CrossRef]
- Dougherty, D.M.; Charles, N.E.; Acheson, A.; John, S.; Furr, R.M.; Hill-Kapturczak, N. Comparing the detection of transdermal and breath alcohol concentrations during periods of alcohol consumption ranging from moderate drinking to binge drinking. Exp. Clin. Psychopharmacol. 2012, 20, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swift, R.M.; Martin, C.S.; Swette, L.; LaConti, A.; Kackley, N. Studies on a wearable, electronic, transdermal alcohol sensor. Alcohol. Clin. Exp. Res. 1992, 16, 721–725. [Google Scholar] [CrossRef]
- Kim, J.; Jeerapan, I.; Imani, S.; Cho, T.N.; Bandodkar, A.; Cinti, S.; Mercier, P.P.; Wang, J. Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sens. 2016, 1, 1011–1019. [Google Scholar] [CrossRef]
- Lansdorp, B.; Ramsay, W.; Hamid, R.; Strenk, E. Wearable enzymatic alcohol biosensor. Sensors 2019, 19, 2380. [Google Scholar] [CrossRef] [Green Version]
- Nyman, E.; Palmlöv, A. The Elimination of Ethyl Alcohol in Sweat1. Skand. Arch. Physiol. 1936, 74, 155–159. [Google Scholar] [CrossRef]
- Brown, D.J. A method for determining the excretion of volatile substances through skin. Methods Find. Exp. Clin. Pharmacol. 1985, 7, 269. [Google Scholar]
- Anderson, J.C.; Hlastala, M.P. The kinetics of transdermal ethanol exchange. J. Appl. Physiol. 2006, 100, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Alessi, S.M.; Barnett, N.P.; Petry, N.M. Experiences with SCRAMx alcohol monitoring technology in 100 alcohol treatment outpatients. Drug Alcohol Depend. 2017, 178, 417–424. [Google Scholar] [CrossRef]
- Simons, J.S.; Wills, T.A.; Emery, N.N.; Marks, R.M. Quantifying alcohol consumption: Self-report, transdermal assessment, and prediction of dependence symptoms. Addict. Behav. 2015, 50, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.F.; Mehmood, M.; Rana, A.M.; Bhatti, M.T. Effect of annealing on electrical resistivity of rf-magnetron sputtered nanostructured SnO2 thin films. Appl. Surf. Sci. 2009, 255, 8562–8565. [Google Scholar] [CrossRef]
- Ramarajan, R.; Kovendhan, M.; Thangaraju, K.; Joseph, D.P.; Babu, R.R. Facile deposition and characterization of large area highly conducting and transparent Sb-doped SnO2 thin film. Appl. Surf. Sci. 2019, 487, 1385–1393. [Google Scholar] [CrossRef]
- Annanouch, F.-E.; Bouchet, G.; Perrier, P.; Morati, N.; Reynard-Carette, C.; Aguir, K.; Martini-Laithier, V.; Bendahan, M. Hydrodynamic evaluation of gas testing chamber: Simulation, experiment. Sens. Actuators B Chem. 2019, 290. [Google Scholar] [CrossRef]
- Annanouch, F.-E.; Bouchet, G.; Perrier, P.; Morati, N.; Reynard-Carette, C.; Aguir, K.; Bendahan, M. How the Chamber Design Can Affect Gas Sensor Responses. Proceedings 2018, 2, 820. [Google Scholar] [CrossRef] [Green Version]
- Annanouch, F.E.; Haddi, Z.; Vallejos, S.; Umek, P.; Guttmann, P.; Bittencourt, C.; Llobet, E. Aerosol-assisted CVD-grown WO3 nanoneedles decorated with copper oxide nanoparticles for the selective and humidity-resilient detection of H2S. ACS Appl. Mater. Interfaces 2015, 7. [Google Scholar] [CrossRef]
- Vallejos, S.; Selina, S.; Annanouch, F.E.; Gràcia, I.; Llobet, E.; Blackman, C. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Vallejos, S.; Selina, S.; Annanouch, F.E.; Gràcia, I.; Llobet, E.; Blackman, C. Micromachined Gas Sensors Based on Au-functionalized SnO2 Nanorods Directly Integrated without Catalyst Seeds via AA-CVD. Procedia Eng. 2016, 168, 1078–1081. [Google Scholar] [CrossRef]
- Lawson, B. Nouvelle Approche de suivi non Invasif de L’alcoolémie par Perspiration à l’aide de Multicapteurs MOX. Ph.D. Thesis, Aix-Marseille University, Marseille, France, 2018. [Google Scholar]
- Mani, G.K.; Rayappan, J.B.B. Impact of annealing duration on spray pyrolysis deposited nanostructured zinc oxide thin films. Superlattices Microstruct. 2014, 67, 82–87. [Google Scholar] [CrossRef]
- Ryzhikov, A.S.; Vasiliev, R.B.; Rumyantseva, M.N.; Ryabova, L.I.; Dosovitsky, G.A.; Gilmutdinov, A.M.; Kozlovsky, V.F.; Gaskov, A.M. Microstructure and electrophysical properties of SnO2, ZnO and In2O3 nanocrystalline films prepared by reactive magnetron sputtering. Mater. Sci. Eng. B 2002, 96, 268–274. [Google Scholar] [CrossRef]
- Beaurain, A.; Luxembourg, D.; Dufour, C.; Koncar, V.; Capoen, B.; Bouazaoui, M. Effects of annealing temperature and heat-treatment duration on electrical properties of sol–gel derived indium-tin-oxide thin films. Thin Solid Films 2008, 516, 4102–4106. [Google Scholar] [CrossRef]
- Yamazoe, N. New approaches for improving semiconductor gas sensors. Sens. Actuators B Chem. 1991, 5, 7–19. [Google Scholar] [CrossRef]
- Katoch, A.; Sun, G.-J.; Choi, S.-W.; Byun, J.-H.; Kim, S.S. Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. Sens. Actuators B Chem. 2013, 185, 411–416. [Google Scholar] [CrossRef]
- Annanouch, F.E.; Gràcia, I.; Figueras, E.; Llobet, E.; Cané, C.; Vallejos, S. Localized aerosol-assisted CVD of nanomaterials for the fabrication of monolithic gas sensor microarrays. Sens. Actuators B Chem. 2015, 216. [Google Scholar] [CrossRef]
- Alagh, A.; Annanouch, F.E.; Umek, P.; Bittencourt, C.; Sierra-Castillo, A.; Haye, E.; Colomer, J.F.; Llobet, E. CVD growth of self-assembled 2D and 1D WS2 nanomaterials for the ultrasensitive detection of NO2. Sens. Actuators B Chem. 2021, 326. [Google Scholar] [CrossRef]
- Merdrignac-Conanec, O.; Bernicot, Y.; Guyader, J. Humidity effect on baseline conductance and H2S sensitivity of cadmium germanium oxynitride thick film gas sensors. Sens. Actuators B Chem. 2000, 63, 86–90. [Google Scholar] [CrossRef]
- Annanouch, F.E.; Aguir, K.; Martini-Laithier, V.; Fiorido, T.; Bendahan, M. SnO2 Sensors for a Portable Transdermal Alcohol Detector Via Finger. In Proceedings of the IEEE Sensors, Montreal, QC, Canada, 27–30 October 2019. [Google Scholar]
- Li, Z.; Yi, J. Enhanced ethanol sensing of Ni-doped SnO2 hollow spheres synthesized by a one-pot hydrothermal method. Sens. Actuators B Chem. 2017, 243, 96–103. [Google Scholar] [CrossRef]
- Zhang, B.; Fu, W.; Li, H.; Fu, X.; Wang, Y.; Bala, H.; Wang, X.; Sun, G.; Cao, J.; Zhang, Z. Synthesis and characterization of hierarchical porous SnO2 for enhancing ethanol sensing properties. Appl. Surf. Sci. 2016, 363, 560–565. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annanouch, F.E.; Martini, V.; Fiorido, T.; Lawson, B.; Aguir, K.; Bendahan, M. Embedded Transdermal Alcohol Detection via a Finger Using SnO2 Gas Sensors. Sensors 2021, 21, 6852. https://doi.org/10.3390/s21206852
Annanouch FE, Martini V, Fiorido T, Lawson B, Aguir K, Bendahan M. Embedded Transdermal Alcohol Detection via a Finger Using SnO2 Gas Sensors. Sensors. 2021; 21(20):6852. https://doi.org/10.3390/s21206852
Chicago/Turabian StyleAnnanouch, Fatima Ezahra, Virginie Martini, Tomas Fiorido, Bruno Lawson, Khalifa Aguir, and Marc Bendahan. 2021. "Embedded Transdermal Alcohol Detection via a Finger Using SnO2 Gas Sensors" Sensors 21, no. 20: 6852. https://doi.org/10.3390/s21206852
APA StyleAnnanouch, F. E., Martini, V., Fiorido, T., Lawson, B., Aguir, K., & Bendahan, M. (2021). Embedded Transdermal Alcohol Detection via a Finger Using SnO2 Gas Sensors. Sensors, 21(20), 6852. https://doi.org/10.3390/s21206852