Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System
Abstract
:1. Introduction
- We established an EEG-based driver-assistance system and driving advisor recommendation platform, integrating a wearable EEG sensor, data streaming to a cloud server, real-time signal processing, service dashboards for the drivers, and service managers for driving recommendations and health advisor support.
- We identified EEG biomarkers, including frequency spectral measures, while driving with route-induced cognitive demands, using statistical analysis and hypothesis tests.
- We developed machine-learning models to classify the neurological states affected by the cognitive demands in changing traffic environments.
2. Materials and Methods
2.1. EEG-Based ADAS System
2.2. Study Design
2.3. Driving Scenarios and Mental Workload
2.4. Participants in the Experiment
2.5. Data Acquisition
2.6. Pre-Processing
2.7. Feature Extraction
2.7.1. EEG Frequency-Domain Features
2.7.2. DAR and DTR
2.8. Features Selection
2.9. Classification Algorithms
2.9.1. k-Nearest Neighbors Model (KNN)
2.9.2. Discriminant Analysis Model
2.9.3. SVM Model
2.9.4. C5.0 Model
2.9.5. Quick, Unbiased, and Efficient Statistical Tree (QUEST) Model
2.10. Data Analysis
3. Results
3.1. Statistical Analysis
3.1.1. Association of Driving Environments with EEG Features
3.1.2. Changes of DAR and DTR in the Driving States
3.1.3. Correlation of Delta and Theta with Driving Workload
3.2. Machine Learning Analysis
3.2.1. Multi-Class Classification of Resting State and Driving States
3.2.2. Binary Classification of Resting State and Driving States
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Paxion, J.; Galy, E.; Berthelon, C. Mental Workload and Driving. Front. Psychol. 2014, 5, 1344. [Google Scholar] [CrossRef]
- Patten, C.J.D.; Kircher, A.; Östlund, J.; Nilsson, L.; Svenson, O. Driver Experience and Cognitive Workload in Different Traffic Environments. Accid. Anal. Prev. 2006, 38, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Y.; Wu, C.; Darvas, F.; Chaovalitwongse, W.A. Online Prediction of Driver Distraction Based on Brain Activity Patterns. IEEE Trans. Intell. Transp. Syst. 2015, 16, 136–150. [Google Scholar] [CrossRef]
- Fan, J.; Wade, J.W.; Key, A.P.; Warren, Z.E.; Sarkar, N. Eeg-Based Affect and Workload Recognition in a Virtual Driving Environment for Asd Intervention. IEEE Trans. Biomed. Eng. 2018, 65, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Hong, S.; Kim, D.; Hussain, I.; Seo, Y. Intelligent in-Car Health Monitoring System for Elderly Drivers in Connected Car; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Park, S.J.; Hong, S.; Kim, D.; Yu, J.H.; Hussain, I.; Park, H.G.; Benjamin, H.C.M. Development of Intelligent Stroke Monitoring System for the Elderly during Sleeping. Sleep Med. 2019, 64, S294. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.J. Prediction of Myoelectric Biomarkers in Post-Stroke Gait. Sensors 2021, 21, 5334. [Google Scholar] [CrossRef]
- Park, S.J.; Hong, S.; Kim, D.; Seo, Y.; Hussain, I.; Hur, J.H.; Jin, W. Development of a Real-Time Stroke Detection System for Elderly Drivers Using Quad-Chamber Air Cushion and IoT Devices; SAE International: Warrendale, PE, USA, 2018. [Google Scholar]
- Park, S.J.; Hong, S.; Kim, D.; Seo, Y.; Hussain, I. Knowledge Based Health Monitoring during Driving; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Hussain, I.; Hong, S.; Kim, D.; Seo, Y.; Park, S.J. Development of Elderly Drivers’ Health Monitoring System Using Iot Platform. Int. Conf. Korean Soc. Emot. Sensib. (ICES) 2017, 2017, 32. [Google Scholar]
- Park, S.J.; Hong, S.; Kim, D.; Seo, Y.; Jin, K.Y.; Jun, S.B.; Hussain, I. Effectiveness of Balance Seat on Vibration Comfort; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Cantin, V.; Lavallière, M.; Simoneau, M.; Teasdale, N. Mental Workload When Driving in a Simulator: Effects of Age and Driving Complexity. Accid. Anal. Prev. 2009, 41, 763–771. [Google Scholar] [CrossRef]
- Protzak, J.; Gramann, K. Investigating Established Eeg Parameter during Real-World Driving. Front. Psychol. 2018, 9, 2289. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Hong, S.; Hussain, I.; Seo, Y.; Park, S.J. Analysis of Bio-Signal Data of Stroke Patients and Normal Elderly People for Real-Time Monitoring; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Hussain, I.; Park, S.J. Healthsos: Real-Time Health Monitoring System for Stroke Prognostics. IEEE Access 2020, 8, 213574–213586. [Google Scholar] [CrossRef]
- Hussain, I.; Seo, Y.; Kim, C.H.; Benjamin, C.H.M.; Park, S.J. Quantifying Physiological Biomarkers of a Microwave Brain Stimulation Device. Sensors 2021, 21, 1896. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Park, S.J. Quantitative Evaluation of Task-Induced Neurological Outcome after Stroke. Brain Sci. 2021, 11, 900. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Hong, S.; Kim, D.; Hussain, I.; Seo, Y.; Kim, M.K. Physiology Evaluation of a Non-Invasive Wearable Vagus Nerve Stimulation (Vns) Device; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Rupp, G.; Berka, C.; Meghdadi, A.H.; Stevanović Karić, M.; Casillas, M.; Smith, S.; Rosenthal, E.; McShea, K.; Sones, E.; Marcotte, D.T. Eeg-Based Neurocognitive Metrics May Predict Simulated and on-Road Driving Performance in Older Drivers. Front. Hum. Neurosci. 2019, 12, 532. [Google Scholar] [CrossRef] [PubMed]
- Di Flumeri, G.; Borghini, G.; Aricò, P.; Sciaraffa, N.; Lanzi, P.; Pozzi, S.; Vignali, V.; Lantieri, C.; Bichicchi, A.; Simone, A. Eeg-Based Mental Workload Neurometric to Evaluate the Impact of Different Traffic and Road Conditions in Real Driving Settings. Front. Hum. Neurosci. 2018, 12, 509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.S.; Yoon, D.; Shin, H.S.; Park, C.H. Predicting the Eeg Level of a Driver Based on Driving Information. IEEE Trans. Intell. Transp. Syst. 2018, 20, 1215–1225. [Google Scholar] [CrossRef]
- Yang, L.; Ma, R.; Zhang, H.M.; Guan, W.; Jiang, S. Driving Behavior Recognition Using Eeg Data from a Simulated Car-Following Experiment. Accid. Anal. Prev. 2018, 116, 30–40. [Google Scholar] [CrossRef]
- Yan, F.; Liu, M.; Ding, C.; Wang, Y.; Yan, L. Driving Style Recognition Based on Electroencephalography Data from a Simulated Driving Experiment. Front. Psychol. 2019, 10, 1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Guan, W.; Ma, R.; Li, X. Comparison among Driving State Prediction Models for Car-Following Condition Based on Eeg and Driving Features. Accid. Anal. Prev. 2019, 133, 105296. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Routray, A. Driver Fatigue Detection through Chaotic Entropy Analysis of Cortical Sources Obtained from Scalp Eeg Signals. IEEE Trans. Intell. Transp. Syst. 2020, 21, 185–198. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Hu, H.; Wan, F.; Li, T.; Gao, L.; Bezerianos, A.; Sun, Y.; Jung, T.P. Dynamic Reorganization of Functional Connectivity Unmasks Fatigue Related Performance Declines in Simulated Driving. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1790–1799. [Google Scholar] [CrossRef]
- Wang, H.; Wu, C.; Li, T.; He, Y.; Chen, P.; Bezerianos, A. Driving Fatigue Classification Based on Fusion Entropy Analysis Combining Eog and Eeg. IEEE Access 2019, 7, 61975–61986. [Google Scholar] [CrossRef]
- Kukkala, V.K.; Tunnell, J.; Pasricha, S.; Bradley, T. Advanced Driver-Assistance Systems: A Path toward Autonomous Vehicles. IEEE Consum. Electron. Mag. 2018, 7, 18–25. [Google Scholar] [CrossRef]
- Liao, Y.; Li, G.; Li, S.E.; Cheng, B.; Green, P. Understanding Driver Response Patterns to Mental Workload Increase in Typical Driving Scenarios. IEEE Access 2018, 6, 35890–35900. [Google Scholar] [CrossRef]
- Divakarla, K.P.; Emadi, A.; Razavi, S. A Cognitive Advanced Driver Assistance Systems Architecture for Autonomous-Capable Electrified Vehicles. IEEE Trans. Transp. Electrif. 2018, 5, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, K.; Abe, E.; Kamata, K.; Nakayama, C.; Suzuki, Y.; Yamakawa, T.; Hiraoka, T.; Kano, M.; Sumi, Y.; Masuda, F.; et al. Heart Rate Variability-Based Driver Drowsiness Detection and Its Validation with Eeg. IEEE Trans. Biomed. Eng. 2019, 66, 1769–1778. [Google Scholar] [CrossRef]
- Yin, J.-L.; Chen, B.-H.; Lai, K.-H.R.; Li, Y. Automatic Dangerous Driving Intensity Analysis for Advanced Driver Assistance Systems from Multimodal Driving Signals. IEEE Sens. J. 2017, 18, 4785–4794. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.J. Big-Ecg: Cardiographic Predictive Cyber-Physical System for Stroke Management. IEEE Access 2021, 9, 123146–123164. [Google Scholar] [CrossRef]
- Park, S.J.; Hussain, I.; Hong, S.; Kim, D.; Park, H.; Benjamin, H.C.M. Real-Time Gait Monitoring System for Consumer Stroke Prediction Service. Paper presented at the 2020 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 4–6 January 2020. [Google Scholar]
- Park, H.; Hong, S.; Hussain, I.; Kim, D.; Seo, Y.; Park, S.J. Gait Monitoring System for Stroke Prediction of Aging Adults; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Hong, S.; Kim, D.; Park, H.; Seo, Y.; Hussain, I.; Park, S.J. Gait Feature Vectors for Post-Stroke Prediction Using Wearable Sensor. Sci. Emot. Sensib. 2019, 22, 55–64. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of Nasa-Tlx (Task Load Index): Results of Empirical and Theoretical Research. In Advances in Psychology; Hancock, P.J., Meshkati, N., Eds.; Elsevier: Amsterdam, The Netherlands, 1988; pp. 139–183. [Google Scholar]
- Hyvarinen, A. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Trans. Neural Netw. 1999, 10, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.S.; Schlink, B.R.; Hairston, D.W.; König, P.; Ferris, D.P. Induction and Separation of Motion Artifacts in Eeg Data Using a Mobile Phantom Head Device. J. Neural Eng. 2016, 13, 036014. [Google Scholar] [CrossRef]
- Welch, P. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Coan, J.A.; Allen, J.J.B. Frontal Eeg Asymmetry as a Moderator and Mediator of Emotion. Biol. Psychol. 2004, 67, 7–50. [Google Scholar] [CrossRef] [PubMed]
- Dumas, R.; Morgan, A. Eeg Asymmetry as a Function of Occupation, Task, and Task Difficulty. Neuropsychologia 1975, 13, 219–228. [Google Scholar] [CrossRef]
- Snecdecor, G.W.; Cochran, W.G. Statistical Methods; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- King, G.; Zeng, L. Logistic Regression in Rare Events Data. Political Anal. 2001, 9, 137–163. [Google Scholar] [CrossRef] [Green Version]
- McLachlan, G.J. Discriminant Analysis and Statistical Pattern Recognition; John Wiley & Sons: Hoboken, NJ, USA, 2004; Volume 544. [Google Scholar]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Quinlan, J.R. Data Mining Tools See5 and C5.0. 2004. Available online: http://www.rulequest.com/see5-info.html (accessed on 1 August 2021).
- Loh, W.Y.; Shih, S.-Y. Split Selection Methods for Classification Trees. Stat. Sin. 1997, 7, 815–840. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M. Tensorflow: A System for Large-Scale Machine Learning. In Proceedings of the 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016. [Google Scholar]
- Wang, Y.-K.; Jung, T.-P.; Lin, C.-T. Theta and Alpha Oscillations in Attentional Interaction during Distracted Driving. Front. Behav. Neurosci. 2018, 12, 3. [Google Scholar] [CrossRef] [Green Version]
- Herweg, N.; Ethan, A.; Solomon, A.; Kahana, M.J. Theta Oscillations in Human Memory. Trends Cogn. Sci. 2020, 24, 208–227. [Google Scholar] [CrossRef]
- Diaz-Piedra, C.; Sebastián, M.V.; Stasi, L.L.D. Eeg Theta Power Activity Reflects Workload among Army Combat Drivers: An Experimental Study. Brain Sci. 2020, 10, 199. [Google Scholar] [CrossRef] [Green Version]
- Borghini, G.; Astolfi, L.; Vecchiato, G.; Mattia, D.; Babiloni, F. Measuring Neurophysiological Signals in Aircraft Pilots and Car Drivers for the Assessment of Mental Workload, Fatigue and Drowsiness. Neurosci. Biobehav. Rev. 2014, 44, 4458–4475. [Google Scholar] [CrossRef]
- Lohani, M.; Brennan, R.P.; Strayer, D.L. A Review of Psychophysiological Measures to Assess Cognitive States in Real-World Driving. Front. Hum. Neurosci. 2019, 13, 57. [Google Scholar] [CrossRef]
- Harmony, T.; Fernández, T.; Silva, J.; Bernal, J.; Díaz-Comas, L.; Reyes, A.; Marosi, E.; Rodríguez, M.; Rodríguez, M. Eeg Delta Activity: An Indicator of Attention to Internal Processing during Performance of Mental Tasks. Int. J. Psychophysiol. 1996, 24, 161–171. [Google Scholar] [CrossRef]
- Jap, B.T.; Lal, S.; Fischer, P.; Bekiaris, F. Using Eeg Spectral Components to Assess Algorithms for Detecting Fatigue. Expert Syst. Appl. 2009, 36, 2352–2359. [Google Scholar] [CrossRef]
- Xia, L.; Malik, A.S.; Subhani, A.R. A Physiological Signal-Based Method for Early Mental-Stress Detection. Biomed. Signal Process. Control 2018, 46, 18–32. [Google Scholar] [CrossRef]
- Gundel, A.; Wilson, G.A. Topographical Changes in the Ongoing Eeg Related to the Difficulty of Mental Tasks. Brain Topogr. 1992, 5, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Henriques, J.B.; Davidson, R.J. Brain Electrical Asymmetries during Cognitive Task Performance in Depressed and Nondepressed Subjects. Biol. Psychiatry 1997, 42, 1039–1050. [Google Scholar] [CrossRef]
- Koller-Schlaud, K.; Ströhle, A.; Bärwolf, E.; Behr, J.; Rentzsch, J. Eeg Frontal Asymmetry and Theta Power in Unipolar and Bipolar Depression. J. Affect. Disord. 2020, 276, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Becker, H.; Fleureau, J.; Guillotel, P.; Wendling, F.; Merlet, I.; Albera, L. Emotion Recognition Based on High-Resolution Eeg Recordings and Reconstructed Brain Sources. IEEE Trans. Affect. Comput. 2020, 11, 244–257. [Google Scholar] [CrossRef]
- Halim, Z.; Rehan, M. On Identification of Driving-Induced Stress Using Electroencephalogram Signals: A Framework Based on Wearable Safety-Critical Scheme and Machine Learning. Inf. Fusion 2020, 53, 66–79. [Google Scholar] [CrossRef]
- Krishna, N.M.; Sekaran, K.; Vamsi, A.V.N.; Ghantasala, G.S.P.; Chandana, P.; Kadry, S.; Blažauskas, T.; Damaševičius, R. An Efficient Mixture Model Approach in Brain-Machine Interface Systems for Extracting the Psychological Status of Mentally Impaired Persons Using Eeg Signals. IEEE Access 2019, 7, 77905–77914. [Google Scholar] [CrossRef]
EEG Channel | EEG Spectral Waves | EEG Feature | Number of Features |
---|---|---|---|
Fp1, Fp2, O1, and O2 | δ, θ, α, β, γ | Mean Power | 20 |
Fp1, Fp2, O1, and O2 | δ, θ, α, β, γ | Median Frequency | 20 |
Fp1, Fp2, O1, and O2 | δ, θ, α, β, γ | Mean Frequency | 20 |
Fp1, Fp2, O1, and O2 | δ, θ, α, β, γ | Spectral Edge | 20 |
Fp1, Fp2, O1, and O2 | δ, θ, α, β, γ | Peak Frequency | 20 |
Global | δ, θ, α, β, γ | Mean Power | 5 |
Frontal and Occipital | δ, θ, α, β, γ | Mean Power | 10 |
Frontal and Occipital | δ, θ, α, β, γ | Change of Mean Power relative to Resting state | 10 |
Fp1, Fp2, O1, and O2 | DAR (δ/α), DTR (δ/θ) | Mean Power | 8 |
Fp1, Fp2, O1, and O2 | DAR (δ/α), DTR (δ/θ) | Change of Mean Power relative to Resting state | 8 |
Fp1, Fp2, O1, and O2 | - | Total Mean Power | 4 |
Fp1, Fp2, O1, and O2 | - | Change of Mean Power relative to Resting state | 4 |
EEG Feature (Global) | Driving States | Mean Value | Standard Deviation | Relative Difference of C, E from Baseline (R), (C-R)/R or (E-R)/R | t-Test Significance, p-Value |
---|---|---|---|---|---|
Alpha (Relative Power) | Resting (R) | 0.124 | 0.053 | - | - |
City-Roadway (C) | 0.133 | 0.024 | 0.073 | 0.04 * | |
Expressway (E) | 0.130 | 0.024 | 0.048 | 0.03 * | |
Beta (Relative Power) | Resting (R) | 0.278 | 0.133 | - | - |
City-Roadway (C) | 0.176 | 0.040 | −0.367 | 0.0001 * | |
Expressway (E) | 0.160 | 0.036 | −0.424 | 0.0001 * | |
Theta (Relative Power) | Resting (R) | 0.113 | 0.034 | - | - |
City-Roadway (C) | 0.167 | 0.029 | 0.478 | 0.06 * | |
Expressway (E) | 0.175 | 0.031 | 0.549 | 0.07 * | |
Delta (Relative Power) | Resting (R) | 0.344 | 0.284 | - | - |
City-Roadway (C) | 0.477 | 0.088 | 0.387 | 0.0001 * | |
Expressway (E) | 0.492 | 0.085 | 0.430 | 0.0001 * | |
Gamma (Relative Power) | Resting (R) | 0.141 | 0.071 | - | - |
City-Roadway (C) | 0.047 | 0.016 | −0.667 | 0.0001 * | |
Expressway (E) | 0.043 | 0.017 | −0.695 | 0.0001 * |
EEG Feature (Global) | Driving States | Mean Value | Standard Deviation | Relative Difference of C, E from Baseline (R), (C−R)/R or (E-R)/R | t-Test, Significance, p-Value |
---|---|---|---|---|---|
DAR | Resting (R) | 11.330 | 21.123 | - | - |
City-Roadway (C) | 4.324 | 2.345 | −0.618 | 0.0001 * | |
Expressway (E) | 4.776 | 3.692 | −0.578 | 0.0001 * | |
DTR | Resting (R) | 5.200 | 7.281 | - | - |
City-Roadway (C) | 3.295 | 1.451 | −0.366 | 0.0001 * | |
Expressway (E) | 3.271 | 1.670 | −0.371 | 0.0001 * |
Prediction | |||||||||
---|---|---|---|---|---|---|---|---|---|
Actual | KNN Model | Training (Accuracy = 76.73%) | Testing (Accuracy = 64.23%) | ||||||
City-Roadway | Expressway | Resting | Accuracy | City-Roadway | Expressway | Resting | Accuracy | ||
City-Roadway | 234 | 59 | 2 | 79.32% | 88 | 50 | 1 | 63.31% | |
Expressway | 74 | 191 | 0 | 72.08% | 36 | 53 | 0 | 59.55% | |
Resting | 2 | 0 | 31 | 93.94% | 2 | 0 | 16 | 88.89% | |
Actual | Discriminant Analysis Model | Training (Accuracy = 72.01%) | Testing (Accuracy = 66.26%) | ||||||
City-Roadway | Expressway | Resting | Accuracy | City-Roadway | Expressway | Resting | Accuracy | ||
City-Roadway | 214 | 80 | 1 | 72.54% | 87 | 50 | 2 | 62.59% | |
Expressway | 82 | 182 | 1 | 68.68% | 29 | 59 | 1 | 66.29% | |
Resting | 2 | 0 | 31 | 93.94% | 1 | 1 | 16 | 88.89% | |
Actual | SVM Model | Training (Accuracy = 78.92%) | Testing (Accuracy = 68.70%) | ||||||
City-Roadway | Expressway | Resting | Accuracy | City-Roadway | Expressway | Resting | Accuracy | ||
City-Roadway | 242 | 53 | 0 | 82.03% | 96 | 42 | 1 | 69.06% | |
Expressway | 72 | 193 | 0 | 72.83% | 33 | 56 | 0 | 62.92% | |
Resting | 0 | 0 | 33 | 100.00% | 1 | 0 | 17 | 94.44% | |
Actual | C5.0 Model | Training (Accuracy = 96.46%) | Testing (Accuracy = 64.63%) | ||||||
City-Roadway | Expressway | Resting | Accuracy | City-Roadway | Expressway | Resting | Accuracy | ||
City-Roadway | 285 | 10 | 0 | 96.61% | 82 | 56 | 1 | 58.99% | |
Expressway | 11 | 254 | 0 | 95.85% | 27 | 61 | 1 | 68.54% | |
Resting | 0 | 0 | 33 | 100.00% | 1 | 1 | 16 | 88.89% | |
Actual | QUEST Model | Training (Accuracy = 67.45%) | Testing (Accuracy = 64.63%) | ||||||
City-Roadway | Expressway | Resting | Accuracy | City-Roadway | Expressway | Resting | Accuracy | ||
City-Roadway | 217 | 76 | 2 | 73.56% | 88 | 48 | 3 | 63.31% | |
Expressway | 108 | 151 | 6 | 56.98% | 34 | 53 | 2 | 59.55% | |
Resting | 0 | 0 | 33 | 100% | 0 | 0 | 18 | 100.00% |
(a) Model | Overall Accuracy | AUC | Gini |
---|---|---|---|
K-Nearest Neighbors Model | 99.26% | 1.000 | 0.999 |
C5.0 Model | 99.26% | 0.987 | 0.975 |
SVM Model | 99.51% | 1.000 | 1.000 |
Discriminant Analysis Model | 99.26% | 1.000 | 0.999 |
QUEST Model | 97.53% | 0.986 | 0.972 |
(b) Model | Overall Accuracy | AUC | Gini |
K-Nearest Neighbors Model | 98.97% | 0.999 | 0.998 |
C5.0 Model | 99.59% | 0.999 | 0.997 |
SVM Model | 99.79% | 1.000 | 1.000 |
Discriminant Analysis Model | 99.18% | 0.999 | 0.999 |
QUEST Model | 98.14% | 0.990 | 0.979 |
(c) Model | Overall Accuracy | AUC | Gini |
K-Nearest Neighbors Model | 71.95% | 0.779 | 0.559 |
C5.0 Model | 75.38% | 0.771 | 0.541 |
SVM Model | 69.54% | 0.77 | 0.541 |
Discriminant Analysis Model | 68.27% | 0.753 | 0.506 |
QUEST Model | 65.48% | 0.667 | 0.334 |
Study | Study Sample | EEG Features | Findings | Application |
---|---|---|---|---|
Becker et al. [61] | 40 subjects | EEG band powers, Phase Synchronization Index (PSI), Higher Order Crossing (HOC), Spectral Crest Factor (SCF), Fractal Dimension (FD) | Features extracted from the EEG band powers yield the best results, leading to overall classification scores of up to 70 or 75 percent. | Emotion Recognition Based on High-Resolution EEG |
Iqram et al. [15] | 37 stroke patients and 36 healthy elderly volunteers | EEG band powers, Revised Brain Symmetry Index, DAR, DTR | SVM model classified the stroke patients and the healthy adults with an accuracy of 92% | Disease prognostics using EEG |
Halim et al. [62] | 86 subjects | EEG band powers | SVM performs better to distinguish between rest and stress state with average classification accuracy of 97.95% | Driving-induced stress using EEG |
Krishna et al. [63] | 16 subjects | Alpha band powers | Mixture classification techniques classified different emotions with an average emotion recognition accuracy of 89% | Emotion Recognition Based on EEG |
Proposed work | 17 healthy adult drivers | Alpha band powers | EEG delta, theta, DAR, DTR features showed stronger correlations with driving states. | Driving-induced mental workload using EEG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, I.; Young, S.; Park, S.-J. Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System. Sensors 2021, 21, 6985. https://doi.org/10.3390/s21216985
Hussain I, Young S, Park S-J. Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System. Sensors. 2021; 21(21):6985. https://doi.org/10.3390/s21216985
Chicago/Turabian StyleHussain, Iqram, Seo Young, and Se-Jin Park. 2021. "Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System" Sensors 21, no. 21: 6985. https://doi.org/10.3390/s21216985
APA StyleHussain, I., Young, S., & Park, S.-J. (2021). Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System. Sensors, 21(21), 6985. https://doi.org/10.3390/s21216985