Comparison of Manual Wheelchair and Pushrim-Activated Power-Assisted Wheelchair Propulsion Characteristics during Common Over-Ground Maneuvers
Abstract
:1. Introduction
2. Methods
2.1. Hardware Setup and Participants
2.2. Experimental Protocol
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flemmer, C.L.; Flemmer, R.C. A review of manual wheelchairs. Disabil. Rehabil. Assist. Technol. 2016, 11, 177–187. [Google Scholar] [CrossRef]
- Smith, E.M.; Giesbrecht, E.M.; Mortenson, W.B.; Miller, W.C. Prevalence of Wheelchair and Scooter Use Among Community-Dwelling Canadians. Phys. Ther. 2016, 96, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Karp, G. Life on Wheels: The A to Z Guide to Living Fully with Mobility Issues; Demos Medical Publishing: New York, NY, USA, 2008. [Google Scholar]
- Hastings, J.; Robins, H.; Griffiths, Y.; Hamilton, C. The differences in self-esteem, function, and participation between adults with low cervical motor tetraplegia who use power or manual wheelchairs. Arch. Phys. Med. Rehabil. 2011, 92, 1785–1788. [Google Scholar] [CrossRef]
- De Groot, S.; Post, M.W.M.; Bongers-Janssen, H.M.H.; Bloemen-Vrencken, J.H.; van der Woude, L.H. Is manual wheelchair satisfaction related to active lifestyle and participation in people with a spinal cord injury? Spinal Cord 2011, 49, 560–565. [Google Scholar] [CrossRef]
- Subbarao, J.V.; Klopfstein, J.; Turpin, R. Prevalence and Impact of Wrist and Shoulder Pain in Patients with Spinal Cord Injury. J. Spinal Cord Med. 1995, 18, 9–13. [Google Scholar] [CrossRef]
- Curtis, K.A.; Drysdale, G.A.; Lanza, R.D.; Kolber, M.; Vitolo, R.S.; West, R. Shoulder pain in wheelchair users with tetraplegia and paraplegia. Arch. Phys. Med. Rehabil. 1999, 80, 453–457. [Google Scholar] [CrossRef]
- Choukou, M.; Best, K.L.; Potvin-Gilbert, M.; Routhier, F.; Lettre, J.; Gamache, S.; Borisoff, J.F.; Gagnon, D. Scoping review of propelling aids for manual wheelchairs. Assist. Technol. 2019, 33, 1–15. [Google Scholar] [CrossRef]
- SCIRE Community, Wheelchair Propulsion Assist Devices. Available online: https://scireproject.com/community/topic/propulsion-assist-devices/ (accessed on 12 November 2020).
- Khalili, M.; Eugenio, A.; Wood, A.; Van der Loos, M.; Ben Mortenson, W.; Borisoff, J. Perceptions of power-assist devices: Interviews with manual wheelchair users. Disabil. Rehabil. Assist. Technol. 2021, 1–11. [Google Scholar] [CrossRef]
- e-fix-Alber GmbH. Available online: https://www.alber.de/en/products/add-on-drive/e-fix/ (accessed on 12 November 2020).
- Cooper, R.A.; Corfman, T.A.; Fitzgerald, S.G.; Boninger, M.L.; Spaeth, D.M.; Ammer, W.; Arva, J. Performance assessment of a pushrim-activated power-assisted wheelchair control system. IEEE Trans. Control Syst. Technol. 2002, 10, 121–126. [Google Scholar] [CrossRef]
- Levy, C.E.; Chow, J.W.; Tillman, M.D.; Hanson, C.; Donohue, T.; Mann, W.C. Variable-Ratio Pushrim-Activated Power-Assist Wheelchair Eases Wheeling over a Variety of Terrains for Elders. Arch. Phys. Med. Rehabil. 2004, 85, 104–112. [Google Scholar] [CrossRef]
- E-motion-Alber GmbH. Available online: https://www.alber.de/en/products/active-drives/e-motion/ (accessed on 12 November 2020).
- Yamaha NAVI. Available online: https://www.yamahanavi.com/ (accessed on 12 November 2020).
- Algood, S.D.; Cooper, R.A.; Fitzgerald, S.G.; Cooper, R.; Boninger, M.L. Effect of a pushrim-activated power-assist wheelchair on the functional capabilities of persons with tetraplegia. Arch. Phys. Med. Rehabil. 2005, 86, 380–386. [Google Scholar] [CrossRef]
- Algood, S.D.; Cooper, R.A.; Fitzgerald, S.G.; Cooper, R.; Boninger, M.L. Impact of a pushrim-activated power-assisted wheelchair on the metabolic demands, stroke frequency, and range of motion among subjects with tetraplegia. Arch. Phys. Med. Rehabil. 2004, 85, 1865–1871. [Google Scholar] [CrossRef]
- Cooper, R.A.; Fitzgerald, S.G.; Boninger, M.L.; Prins, K.; Rentschler, A.J.; Arva, J.; O’Connor, T.J. Evaluation of a pushrim-activated, power-assisted wheelchair. Arch. Phys. Med. Rehabil. 2001, 82, 702–708. [Google Scholar] [CrossRef]
- Arva, J.; Fitzgerald, S.G.; Cooper, R.A.; Boninger, M.L. Mechanical efficiency and user power requirement with a pushrim activated power assisted wheelchair. Med. Eng. Phys. 2001, 23, 699–705. [Google Scholar] [CrossRef]
- Kloosterman, M.G.M.; Eising, H.; Schaake, L.; Buurke, J.H.; Rietman, J.S. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion. Clin. Biomech. 2012, 27, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Kloosterman, M.G.M.; Buurke, J.H.; de Vries, W.; Van der Woude, L.H.V.; Rietman, J.S. Effect of power-assisted hand-rim wheelchair propulsion on shoulder load in experienced wheelchair users: A pilot study with an instrumented wheelchair. Med. Eng. Phys. 2015, 37, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Giesbrecht, E.M.; Ripat, J.D.; Cooper, J.E.; Quanbury, A.O. Experiences with Using a Pushrim-Activated Power-Assisted Wheelchair for Community-Based Occupations: A Qualitative Exploration. Can. J. Occup. Ther. 2011, 78, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Guillon, B.; Van-Hecke, G.; Iddir, J.; Pellegrini, N.; Beghoul, N.; Vaugier, I.; Figère, M.; Pradon, D.; Lofaso, F. Evaluation of 3 pushrim-activated power-assisted wheelchairs in patients with spinal cord injury. Arch. Phys. Med. Rehabil. 2015, 96, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Levy, C.E.; Buman, M.P.; Chow, J.W.; Tillman, M.D.; Fournier, K.A.; Giacobbi, P. Use of power assist wheels results in increased distance traveled compared with conventional manual wheeling. Am. J. Phys. Med. Rehabil. 2010, 89, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Giacobbi, P.R.; Levy, C.E.; Dietrich, F.D.; Winkler, S.H.; Tillman, M.D.; Chow, J.W. Wheelchair users’ perceptions of and experiences with power assist wheels. Am. J. Phys. Med. Rehabil. 2010, 89, 225–234. [Google Scholar] [CrossRef]
- Corfman, T.A.; Cooper, R.A.; Boninger, M.L.; Koontz, A.M.; Fitzgerald, S.G. Range of motion and stroke frequency differences between manual wheelchair propulsion and pushrim-activated power-assisted wheelchair propulsion. J. Spinal Cord Med. 2003, 26, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Best, K.L.; Kirby, R.L.; Smith, C.; Macleod, D.A. Comparison between performance with a pushrim-activated power-assisted wheelchair and a manual wheelchair on the Wheelchair Skills Test. Disabil. Rehabil. 2006, 28, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Kloosterman, M.G.; Snoek, G.J.; van der Woude, L.H.; Buurke, J.H.; Rietman, J.S. A systematic review on the pros and cons of using a pushrim-activated power-assisted wheelchair. Clin. Rehabil. 2013, 27, 299–313. [Google Scholar] [CrossRef]
- Haubert, L.L.; Requejo, P.S.; Newsam, C.J.; Mulroy, S.J. Comparison of energy expenditure and propulsion characteristics in a standard and three pushrim-activated power-assisted wheelchairs. Top. Spinal Cord Inj. Rehabil. 2005, 11, 64–73. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. Adv. Psychol. 1988, 52, 139–183. [Google Scholar]
- IBM. SPSS Statistics for Windows, Version 26.0; IBM Corp: New York, NY, USA, 2019. [Google Scholar]
- Koontz, A.M.; Worobey, L.A.; Rice, I.M.; Collinger, J.L.; Boninger, M.L. Comparison between overground and dynamometer manual wheelchair propulsion. J. Appl. Biomech. 2012, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Boninger, M.L.; Koontz, A.M.; Sisto, S.A.; Dyson-Hudson, T.A.; Chang, M.; Price, R.; Cooper, R.A. Pushrim biomechanics and injury prevention in spinal cord injury: Recommendations based on CULP-SCI investigations. J. Rehabil. Res. Dev. 2005, 42 (Suppl. 1), 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nash, M.S.; Koppens, D.; van Haaren, M.; Sherman, A.L.; Lippiatt, J.P.; Lewis, J.E. Power-Assisted Wheels Ease Energy Costs and Perceptual Responses to Wheelchair Propulsion in Persons With Shoulder Pain and Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2008, 89, 2080–2085. [Google Scholar] [CrossRef] [PubMed]
Powered Wheels | |
---|---|
Motor (×2) | Grin All-axle, Direct-drive, 4 kg, KV: 7.5 rpm/V, KT: 1.2733 Nm/A, |
Motor Controller | RoboteQ SBL2360T |
Battery (×4) | LiGo: 36V DC, 2.7 A-hr, 0.61 kg |
Maximum speed | 10 km/h |
Range | Greater than 12 km at 5 km/h on a single battery charge |
Total Mass | Mass added to wheelchair is <15 kg |
ElevationTM wheelchair | |
Seat | |
Width | 420 mm |
Depth | 430 mm |
Backrest height | 370 mm |
Rear wheels | 610 mm, one cross stainless-steel spokes, aluminum pushrims |
Rear tires | Pneumatic, inflated to rated tire pressure of 90 psi |
Front casters | Ø 100 mm, Polyurethane tires |
Wheels | |
Microcontroller | Teensy 3.6 |
Bluetooth Module | HC-05 |
Battery | 3.7 Volt Lithium Ion 2000 mAh |
Hall effect sensor | HAL805 (TDK-Micronas, Freiburg, Germany) |
IMU | MPU 6050 6-DoF Accelerometer and Gyro |
Frame | |
IMU | BNO055 (Bosch®, Reutlingen, Germany), Accelerometer and Gyro |
Microcontroller | Teensy 4.1 |
Bluetooth Module | RN-42 |
No. | Gender | Age (Years) | Diagnosis | Weight (kg) | Years of Experience Using Manual Wheelchairs | Years of Experience Using PAPAWs |
---|---|---|---|---|---|---|
P1 | F | 33 | AB 1 | 52 | 3 | 3 |
P2 | M | 30 | AB | 68 | 6 | 5 |
P3 | M | 51 | SCI 2 | 68 | 32 | 2 |
P4 | M | 33 | AB | 75 | 4 | 4 |
Maneuver | Description |
---|---|
Straight forward (STR) | Start from rest, move straight forward, stop 10 m away from the starting point. |
Avoid obstacles (AO1.5, AO3.5) | Maneuver around obstacles that are placed 1.5 or 3.5 m apart. |
Turn 90° (TL90, TR90) | Start from rest, move straight forward 5 m, turn left/right 90°, move straight forward, stop 5 m after the turn. |
Turn in-place (TL180, TR180) | Turn 180° left/right in place. |
Wheel Type | Statistics | Torque (Nm) | Push Frequency | ||||
---|---|---|---|---|---|---|---|
Max | RMS | ||||||
Left | Right | Left | Right | Left | Right | ||
MWC | Mean ± std | 13.70 ± 0.92 | 16.16 ± 0.79 | 6.44 ± 1.30 | 6.93 ± 1.32 | 6.9 ± 1.0 | 7.1 ± 1.2 |
Median | 13.74 | 16.32 | 6.40 | 6.92 | 7.0 | 7.0 | |
Range | [10.84, 17.47] | [12.26, 17.58] | [3.61, 9.68] | [4.24, 9.80] | [4.0, 10.0] | [5.0, 11.0] | |
PAPAW | Mean ± std | 13.34 ± 1.77 | 14.16 ± 2.92 | 5.44 ± 1.51 | 5.67 ± 1.81 | 4.7 ± 1.2 | 4.5 ± 1.3 |
Median | 14.44 | 16.05 | 5.21 | 5.39 | 5.0 | 4.0 | |
Range | [9.60, 15.10] | [7.08, 16.97] | [2.77, 9.05] | [2.89, 9.79] | [3.0, 8.0] | [1.0, 9.0] |
Wheel Type | Statistics | Linear Velocity (m/s) | Angular Velocity (rad/s) | ||
---|---|---|---|---|---|
Max | RMS | Max | rms | ||
MWC | Mean ± std | 1.44 ± 0.26 | 1.02 ± 0.17 | 0.78 ± 0.61 | 0.35 ± 0.20 |
Median | 1.45 | 1.02 | 0.76 | 0.37 | |
Range | [0.83, 2.06] | [0.60, 1.36] | [0.07, 3.13] | [0.03, 0.83] | |
PAPAW | Mean ± std | 1.70 ± 0.41 | 1.15 ± 0.24 | 0.94 ± 0.69 | 0.44 ± 0.24 |
Median | 1.66 | 1.13 | 0.81 | 0.42 | |
Range | [0.97, 2.70] | [0.69, 1.77] | [0.12, 3.04] | [0.06, 1.02] |
Torque (Nm) | Linear Velocity (m/s) | Angular Velocity (rad/s) | Push Frequency | ||||||
---|---|---|---|---|---|---|---|---|---|
Max | RMS | ||||||||
Left | Right | Left | Right | max | rms | max | rms | Left | Right |
−1.35 | −8.76 * | −10.84 * | −11.72 * | −10.38 * | −10.02 * | −7.72 * | −10.95 * | −11.65 * | −12.13 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalili, M.; Kryt, G.; Mortenson, W.B.; Van der Loos, H.F.M.; Borisoff, J. Comparison of Manual Wheelchair and Pushrim-Activated Power-Assisted Wheelchair Propulsion Characteristics during Common Over-Ground Maneuvers. Sensors 2021, 21, 7008. https://doi.org/10.3390/s21217008
Khalili M, Kryt G, Mortenson WB, Van der Loos HFM, Borisoff J. Comparison of Manual Wheelchair and Pushrim-Activated Power-Assisted Wheelchair Propulsion Characteristics during Common Over-Ground Maneuvers. Sensors. 2021; 21(21):7008. https://doi.org/10.3390/s21217008
Chicago/Turabian StyleKhalili, Mahsa, Garrett Kryt, W. Ben Mortenson, Hendrik F. Machiel Van der Loos, and Jaimie Borisoff. 2021. "Comparison of Manual Wheelchair and Pushrim-Activated Power-Assisted Wheelchair Propulsion Characteristics during Common Over-Ground Maneuvers" Sensors 21, no. 21: 7008. https://doi.org/10.3390/s21217008
APA StyleKhalili, M., Kryt, G., Mortenson, W. B., Van der Loos, H. F. M., & Borisoff, J. (2021). Comparison of Manual Wheelchair and Pushrim-Activated Power-Assisted Wheelchair Propulsion Characteristics during Common Over-Ground Maneuvers. Sensors, 21(21), 7008. https://doi.org/10.3390/s21217008