Unfairness of Random Access with Collision Avoidance in Industrial Internet of Things Networks
Abstract
:1. Introduction
1.1. Unfairness of Network Access
1.2. Paper Contribution
- specification of reasons that evoke the unfairness of the network access in the predictive p-persistent CSMA;
- analysis of possible unequal bandwidth distribution among the contending nodes;
- impact of unequal bandwidth distribution on the total network utilization that represent system efficiency;
- examination of the bandwidth allocation stability in time aimed to assess if unfairness tends to escalate or is under self-imposed limit.
2. Fairness in LON Networks
2.1. Reason of Unfairness
2.2. Protocol Specification
2.3. Backlog Counting Algorithm
2.4. Aim of Collision Detection
3. Providing Fairness in Random Access Protocols
3.1. Fairness of Random Access
3.2. Providing Backlog Consistency in Predictive p-Persistent CSMA
3.3. Short-Term and Long-Term Unfairness
3.4. Implicit Bandwidth Allocation in Predictive p-Persistent CSMA
4. Analysis of Backlog Inconsistency Model in Predictive p-Persistent CSMA
4.1. Basic Backlog Inconsistency Model
- probability that a winner selects a certain slot s, s = 1, …, 16k1, which equals 1/(16k1);
- probability that the other (n − m − 1) nodes occupying the state k1 select one of slots s + 1, …, 16k1 equal to [(16k1 − s)/16k1]n−m−1;
- probability that the m nodes occupying the state k2 select one from the slots s + 1, …, 16k2, which equals [(16k2 − s)/16k2]m.
4.2. Bandwidth Share in General Backlog Inconsistency Model
4.3. Fairness Recovery vs. Channel Load
4.4. Fairness vs. Mean Channel Utilization
5. Stability of Bandwidth Share Process
5.1. Definition of Collision Probability
- probability that a distinct node selects a certain slot s, s = 1, …, 16k1, which equals 1/(16k1);
- probability that the other x = 1, …, n − 1 nodes choose the same slot s, s = 1, …, 16k1, which equals 1/(16k1)x multiplied by the binomial coefficient that represents the number of combinations of x elements from a set of (n − 1) elements;
- probability that the other (n − x − 1) nodes choose one from the slots s + 1, …, 16k1, which equals [(16k1 − s)/16k1]n−x−1.
5.2. Stability of Bandwidth Share
- if at least one from the group of the other (n − 1) nodes is also in the state k1, the earliest slot selected by any node from this group belongs to the range of 1, …, 16k1 slots with probability equal to one. Thus, the probability that a given node selects exactly the same slot as the earliest slot selected by the station(s) from the group of (n − 1) nodes, which means that a collision occurs, equals 1/(16k1);
- if none of the group of the other (n − 1) nodes is in the state k1, then the earliest slot selected by any node from this group belongs to the range of 1, …, 16k1 slots with probability less than one. Thus, the probability that a given node that draws from the range of 1, …, 16k1 selects exactly the same slot as the earliest slot selected by the station(s) from the group of (n − 1) nodes, which represents a collision, is less than 1/(16k1).
6. Conclusions
Funding
Conflicts of Interest
Appendix A
References
- Bin-Obaid, H.S.; Trafalis, T.B. Fairness in Resource Allocation: Foundation and Applications. In Network Algorithms, Data Mining, and Applications. NET 2018. Springer Proceedings in Mathematics & Statistics; Bychkov, I., Kalyagin, V., Pardalos, P., Prokopyev, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 315. [Google Scholar]
- Bertsimas, D.; Farias, V.F.; Trichakis, N. On the efficiency-fairness trade-off. Manag. Sci. 2012, 58, 2234–2250. [Google Scholar] [CrossRef]
- Bertsimas, D.; Farias, V.F.; Trichakis, N. The price of fairness. Oper. Res. 2011, 59, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Radunovic, B.; Le Boudec, J.-Y. A unified framework formax-min and min-max fairness with applications. IEEE/ACM Trans. Netw. 2007, 15, 1061–1070. [Google Scholar] [CrossRef] [Green Version]
- Huaizhou, S.; Prasad, R.V.; Onur, E.; Niemegeers, I. Fairness in wireless networks: Issues, measures and challenges. IEEE Commun. Surv. Tutor. 2013, 16, 5–24. [Google Scholar] [CrossRef]
- Bottigleliengo, M.; Casetti, C.; Chiasserini, C.-F.; Meo, M. Short-term fairness for TCP flows in 802.11b WLANs. In Proceedings of the IEEE INFOCOM, Hong Kong, China, 7–11 March 2004; Volume 2, pp. 1383–1392. [Google Scholar]
- Koksal, C.E.; Kassab, H.; Balakrishnan, H. An analysis of short-term fairness in wireless media access protocols. In Proceedings of the ACM SIGMETRICS 2000, Santa Clara, CA, USA, 18–21 June 2000; pp. 118–119. [Google Scholar]
- Kim, E.-J.; Shon, T.; Park, J.J.H.; Jeong, Y.-S. Throughput Fairness Enhancement Using Differentiated Channel Access in Heterogeneous Sensor Networks. Sensors 2011, 11, 6629–6644. [Google Scholar] [CrossRef] [Green Version]
- Tuan, N.M.; Watabe, K.; Giang, P.T.; Nakagawa, K. Improving Fairness in Wireless Ad Hoc Networks by Channel Access Sensing at Link Layer and Packet Rate Control. IEICE Trans. Commun. 2017, 100, 1818–1826. [Google Scholar] [CrossRef]
- Miśkowicz, M.; Golański, R. LON Technology in Wireless Sensor Networking Applications. Sensors 2006, 6, 30–48. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Dong, L.; Yang, Q. DCN-MAC: A Dynamic Channel Negotiation MAC Mechanism for Underwater Acoustic Sensor Networks. Sensors 2020, 20, 406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, F.; Rehman, A.U.; Yahya, A.; Jan, M.A.; Chuma, J.; Tan, Z.; Hussain, K. A Quality of Service-Aware Secured Communication Scheme for Internet of Things-Based Networks. Sensors 2019, 19, 4321. [Google Scholar] [CrossRef] [Green Version]
- Lei, C.; Bie, H.; Fang, G.; Zhang, X. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks. Sensors 2015, 15, 30221–30239. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Liu, T.; Liu, S.; Kacimi, R.; Dhaou, R. Priority-Based Data Collection for UAV-Aided Mobile Sensor Network. Sensors 2020, 20, 3034. [Google Scholar] [CrossRef] [PubMed]
- Parras, J.; Zazo, S. Repeated Game Analysis of a CSMA/CA Network under a Backoff Attack. Sensors 2019, 19, 5393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, H.; Ahmed, I.; Ahmad, R.; Khammari, H.; Bhatti, G.; Ahmed, W.; Alam, M.M. A Machine Learning Approach to Achieving Energy Efficiency in Relay-Assisted LTE-A Downlink System. Sensors 2019, 19, 3461. [Google Scholar] [CrossRef] [Green Version]
- Miśkowicz, M. Access delay in LonTalk MAC protocol. Comput. Stand. Interfaces 2009, 31, 548–556. [Google Scholar] [CrossRef]
- Miśkowicz, M. On the unequal bandwidth share in LonWorks control networks. In Proceedings of the IEEE International Symposium on Industrial Embedded Systems (SIES), Lausanne, Switzerland, 8–10 July 2009; pp. 28–36. [Google Scholar]
- Chetoui, Y.; Bouabdallah, N.; Othman, J.B. Improving the Bandwidth Sharing in IEEE 802.11. In Proceedings of the IEEE International Conference on Local Computer Networks (LCN), Dublin, Ireland, 15–18 October 2007; pp. 927–930. [Google Scholar]
- Ye, W.; Heidemann, J.; Estrin, D. Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw. 2004, 12, 493–506. [Google Scholar] [CrossRef] [Green Version]
- Enz, C.C.; El-Hoiydi, A.; Decotignie, J.D.; Peiris, V. WiseNET: An ultralow-power wireless sensor network solution. Computer 2004, 37, 62–70. [Google Scholar] [CrossRef]
- Van Dam, T.; Langendoen, K. An adaptive energy-efficient MAC protocol for wireless sensor networks. In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA, 5–7 November 2003; pp. 171–180. [Google Scholar]
- Lin, P.; Qiao, C.; Wang, X. Medium access control with a dynamic duty cycle for sensor networks. In Proceedings of the Wireless Communications and Networking Conference, Atlanta, GA, USA, 21–25 March 2004; pp. 1534–1539. [Google Scholar]
- Buchholz, P.; Plönnigs, J. Analytical analysis of access-schemes of the CSMA. In Proceedings of the IEEE International Workshop on Factory Communication Systems (WFCS), Vienna, Austria, 22–24 September 2004; pp. 127–136. [Google Scholar]
- Buchholz, P.; Plönnigs, J.; Neugebauer, M.; Kabitzsch, K. Automated Modeling and Analysis of CSMA-Type Access Schemes for Building Automation Networks. IEEE Trans. Ind. Inform. 2006, 2, 103–111. [Google Scholar]
- Miśkowicz, M.; Szyduczyński, J.; Kościelnik, D. Analytical approach to multiple memoryless backoff contention analysis. In Proceedings of the IEEE World Conference on Factory Communication Systems (WFCS), Palma de Mallorca, Spain, 27–29 May 2015; pp. 1–4. [Google Scholar]
- Miśkowicz, M. Analysis of Mean Access Delay in Variable-Window CSMA. Sensors 2007, 7, 3535–3559. [Google Scholar] [CrossRef]
- Dadenkov, S.A. Analytical model of random multiple access protocol predictive p-persistent CSMA. Radio Electron. Comput. Sci. Control 2019, 1, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Ling, X.; Cheng, Y.; Mark, J.W.; Shen, X. A Renewal Theory Based Analytical Model for the Contention Access Period of IEEE 802.15.4 MAC. IEEE Trans. Wirel. Commun. 2008, 7, 2340–2349. [Google Scholar] [CrossRef]
- Del-Valle-Soto, C.; Mex-Perera, C.; Orozco-Lugo, A.; Lara, M.; Galván-Tejada, G.M.; Olmedo, O. On the MAC/Network/Energy performance evaluation of wireless sensor networks: Contrasting MPH, AODV, DSR and ZTR routing protocols. Sensors 2014, 12, 22811–22847. [Google Scholar] [CrossRef]
- Miśkowicz, M. Reducing Communication by Event-Triggered Sampling. In Event-Based Control and Signal Processing; CRC Press: Boca Raton, FL, USA, 2016; pp. 37–58. [Google Scholar]
- Miśkowicz, M. The event-triggered sampling optimization criterion for distributed networked monitoring and control systems. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Maribor, Slovenia, 10–12 December 2003; pp. 1083–1088. [Google Scholar]
- Consumer Electronics Association. ANSI/CEA 709.1-D-2014: Control Network Protocol Specification; Consumer Electronics Association: Washington, DC, USA, 2014. [Google Scholar]
- Metcalfe, R.; Boggs, D. Ethernet: Distributed Packet Switching for Local Computer Networks. Commun. ACM 1976, 19, 395–404. [Google Scholar] [CrossRef]
- Jain, R.K.; Chiu, D.M.W.; Hawe, W.R. A Quantitative Measure of Fairness and Discrimination; Technical Report DEC-TR-301; Digital Equipment Corporation: Hudson, MA, USA, 1984. [Google Scholar]
- Shannon, C. The mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Lan, T.; Kao, D.; Chiang, M.; Sabharwal, A. An axiomatic theory of fairness. In Proceedings of the IEEE INFOCOM 2010, San Diego, CA, USA, 15–19 March 2010; pp. 1–9. [Google Scholar]
- Hoßfeld, T.; Skorin-Kapov, L.; Heegaard, P.E.; Varela, M. A new QoE fairness index for QoE management. Qual. User Exp. 2018, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Hoßfeld, T.; Skorin-Kapov, L.; Heegaard, P.E.; Varela, M. Definition of QoE Fairness in Shared Systems. IEEE Commun. Lett. 2017, 21, 184–187. [Google Scholar] [CrossRef] [Green Version]
- Tay, Y.C.; Jamieson, K.; Balakrishnan, H. Collision-minimizing CSMA and its applications to wireless sensor networks. IEEE J. Sel. Areas Commun. 2004, 22, 1048–1057. [Google Scholar] [CrossRef]
- Miśkowicz, M. Average channel utilization of CSMA with geometric distribution under varying workload. IEEE Trans. Ind. Inform. 2009, 6, 123–131. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miśkowicz, M. Unfairness of Random Access with Collision Avoidance in Industrial Internet of Things Networks. Sensors 2021, 21, 7135. https://doi.org/10.3390/s21217135
Miśkowicz M. Unfairness of Random Access with Collision Avoidance in Industrial Internet of Things Networks. Sensors. 2021; 21(21):7135. https://doi.org/10.3390/s21217135
Chicago/Turabian StyleMiśkowicz, Marek. 2021. "Unfairness of Random Access with Collision Avoidance in Industrial Internet of Things Networks" Sensors 21, no. 21: 7135. https://doi.org/10.3390/s21217135
APA StyleMiśkowicz, M. (2021). Unfairness of Random Access with Collision Avoidance in Industrial Internet of Things Networks. Sensors, 21(21), 7135. https://doi.org/10.3390/s21217135