Projections of IoT Applications in Colombia Using 5G Wireless Networks
Abstract
:1. Introduction
1.1. IoT and 5G Networks
1.2. 5G Application Scenarios
1.3. Goals and Motivation
- The main objective of this article is to show the progress for the deployment of the 5G network in Colombia, as well as the availability of the spectrum and the future needs of this resource according to the considerations established by regulatory agencies. In addition, an analysis of potential IoT applications in different sectors of the Colombian economy that could contribute to the development of the regions with the implementation of 5G is presented. The specific objectives of this article are:
- Associate IoT applications with 5G in the future demand of the main economic activities of each department and region in Colombia.
- Contextualize the current situation of 5G network deployment in Colombia.
- Relate the 5G frequency bands that will be implemented in Colombia with the most suitable IoT applications for the demands of economic activities in each department and region.
2. Results and Analysis
2.1. Projected Use of 5G Frequency Bands
2.2. Projected 5G Frequency Bands for Use in Colombia
2.3. Opportunities for Using IoT/5G Applications for Projects in Colombia
2.3.1. Cattle Raising
2.3.2. Tourism
2.3.3. Agriculture
2.3.4. Health
2.3.5. Industry
2.3.6. Environment
3. Discussion
- early execution of spectrum auction processes;
- incentives for operators to deploy infrastructure in areas where there is no high purchasing power by the population, and little opportunity for rapid return on investment;
- rapid regulation for spectrum below 1 GHz to be auctioned and promptly used in rural areas, to overcome propagation problems and the number of antennas that would have to be installed compared to higher frequency bands; and
- implementation of applications in 5G mMTC and eMBB scenarios to satisfy the high density of equipment per square kilometer, as well as high transmission rate requirements.
- The spectrum solution to serve IoT applications in these cases should be oriented to bands above 1 GHz.
- In cases of applications that demand a high data rate, such as virtual reality and big data for tourism in major urban centers, and machine learning in the industrial sector, eMBB is the scenario that best meets this demand, increasing its channel capacity in the future with the use of millimeter bands.
- uRLLC is the 5G scenario that best meets IoT applications in e-health in hospitals, due to its low latency and better performance in highly mobile equipment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ericsson. Ericsson Mobility Report. Available online: https://www.ericsson.com/4afa0c/assets/local/mobility-report/documents/2020/november-2020-ericsson-mobility-report-spanish.pdf (accessed on 8 June 2021).
- Harborth, D.; Pohl, M. Standardization of 5G mobile networks: A systematic literature review and current developments. Int. J. Stand. Res. 2017, 15, 1–24. [Google Scholar] [CrossRef]
- Vera Lopez, A.; Chervyakov, A.; Chance, G.; Verma, S.; Tang, Y. Opportunities and challenges of mmWave NR. IEEE Wirel. Commun. 2019, 26, 4–6. [Google Scholar] [CrossRef]
- Painuly, S.; Kohli, P.; Matta, P.; Sharma, S. Advance Applications and Future Challenges of 5G IoT. In Proceedings of the 3rd International Conference on Intelligent Sustainable Systems (ICISS 2020), Thoothukudi, India, 3–5 December 2020; pp. 1381–1384. [Google Scholar]
- MinICT. Colombia Resolution Number 000638 Dated 1 April, 2020; Colombia, 2020; pp. 1–6. Available online: https://mintic.gov.co/portal/715/articles-126447_resolucion_pilotos_5G.pdf (accessed on 10 June 2021).
- MinICT. MinICT Expects to Have a 5G Auction before the Government Ends. Available online: https://mintic.gov.co/portal/inicio/Sala-de-prensa/MinTIC-en-los-medios/161584:Mintic-espera-tener-una-subasta-5G-antes-que-termine-el-Gobierno (accessed on 10 June 2021).
- Lalit, C.; Rabindranath, B. A comprehensive survey on resource management in internet of things. J. Telecommun. Inf. Technol. 2020, 2020, 27–43. [Google Scholar] [CrossRef]
- Hui, H.; Shi, Q.; Li, F.; Song, Y.; Yan, J. 5G network-based Internet of Things for demand response in smart grid: A survey on application potential. Appl. Energy 2020, 257, 113972. [Google Scholar] [CrossRef]
- Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges. IEEE Access 2017, 6, 3619–3647. [Google Scholar] [CrossRef]
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of things (IoT) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Baek, S.; Kim, D.; Tesanovic, M.; Agiwal, A. 3GPP new radio release 16: Evolution of 5G for industrial internet of things. IEEE Commun. Mag. 2021, 59, 41–47. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.D.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- ITU. World Radiocommunication Conference (WRC-19)—Final Acts. Available online: https://www.itu.int/dms_pub/itu-r/opb/act/R-ACT-WRC.14-2019-PDF-S.pdf (accessed on 28 April 2021).
- Ramesh, M.; Priya, C.G.; Ananthakirupa, V.P.M.B.A.A. Design of efficient massive MIMO for 5G systems—Present and past: A review. In Proceedings of the 2017 International Conference on Intelligent Computing and Control (I2C2), Coimbatore, India, 23–24 June 2017; pp. 1–4. [Google Scholar]
- ETSI. Digital Cellular Telecommunications System (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; 5G, Release 15 (3GPP TR 21.915 version 15.0.0 Release 15); ETSI: Côte d’Azur, France, 2019; pp. 1–120. [Google Scholar]
- ITU. Laying the Groundwork for 5G: Opportunities and Challenges; ITU: Geneva, Switzerland, 2018. [Google Scholar]
- Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Gómez-Mula, F.; Calderín-Curtidor, A.C.; Martínez-Lao, J.A.; Cama-Pinto, A. 5G Mobile Phone Network Introduction in Colombia. Electronics 2021, 10, 922. [Google Scholar] [CrossRef]
- Bechta, K.; Ziólkowski, C.; Kelner, J.M.; Nowosielski, L. Modeling of Downlink Interference in Massive MIMO 5G Macro-Cell. Sensors 2021, 21, 597. [Google Scholar] [CrossRef] [PubMed]
- FCC. FCC Announces Winning Bidders in C-Band Auction. Available online: https://www.fcc.gov/document/fcc-announces-winning-bidders-c-band-auction (accessed on 6 April 2021).
- FCC. America’s 5G Future. Available online: https://www.fcc.gov/5G (accessed on 6 April 2021).
- Ministerio de Economía y Empresa. Nota Informativa sobre la Subasta de Espectro Banda 3600–3800 MHz. Available online: https://avancedigital.mineco.gob.es/5G/Documents/NOTA-INFORMATIVA-SUBASTA-3600-3800-MHz.pdf (accessed on 6 April 2021).
- European 5G Observatory. The 5G Greek Auction Raised 372.3 Million EUR. Available online: https://5gobservatory.eu/the-5g-greek-auction-raised-372-3-million-eur/ (accessed on 6 April 2021).
- PTS. The Auctions in the 3.5 GHz and 2.3 GHz Bands Are Concluded. Available online: https://www.pts.se/en/news/press-releases/2021/the-auctions-in-the-3.5-ghz-and-2.3-ghz-bands-are-concluded/ (accessed on 6 April 2021).
- Ofcom. Award of 700 MHz and 3.6–3.8 GHz Spectrum by Auction. Available online: https://www.ofcom.org.uk/spectrum/spectrum-management/spectrum-awards/awards-in-progress/700-mhz-and-3.6-3.8-ghz-auction (accessed on 6 May 2021).
- European 5G Observatory. Japan Assigns 5G Spectrum to Four Operators. Available online: https://5gobservatory.eu/japan-assigns-5g-spectrum-to-four-operators/ (accessed on 6 May 2021).
- MinICT. Colombia Plan 5G Colombia—The Digital Future Belongs to Everyone. 2019. Available online: https://mintic.gov.co/micrositios/plan_5g//764/articles-162230_recurso_1.pdf (accessed on 6 May 2021).
- National Spectrum Agency. National Frequency Band Allocation Table; National Spectrum Agency: Bogota, Colombia, 2021; p. 359. [Google Scholar]
- MinICT. Colombia Framework Plan for the Allocation of Spectrum Use Permits 2020–2022; MinICT: Bogota, Colombia, 2020. [Google Scholar]
- MinICT. Colombia Resolution Number 001322 of July 27, 2020; MINTIC Colombia: Bogota, Colombia, 2020; pp. 1–2. [Google Scholar]
- Communications Industry Directorate of MinICT Allocation Report—Spectrum for 5G Technical Test Use. 2020. Available online: https://mintic.gov.co/portal/715/articles-151433_recurso_1.pdf (accessed on 6 May 2021).
- Claro. Claro Starts New 5G Trials in Several Cities. Available online: https://www.claro.com.co/institucional/pruebas-5g/ (accessed on 18 March 2021).
- Military Hospital HOMIL and Movistar Present Second 5G Pilot. Available online: https://www.hospitalmilitar.gov.co/index.php?idcategoria=69906 (accessed on 19 March 2021).
- TigoUne 5G Tests: TigoUne Obtained the Highest Mobile Speed Ever Achieved in Colombia. Available online: http://saladeprensa.une.com.co/index.php/1945-pruebas-5g-tigoune-obtuvo-la-mayor-velocidad-movil-jamas-alcanzada-en-colombia (accessed on 18 March 2021).
- Claro. 5G Technology in Colombia: We Are Already in Trials. Available online: https://www.claro.com.co/empresas/sectores/noticias-interes/5g-colombia/ (accessed on 1 April 2021).
- MinICT. Colombia Preliminary Analysis of the Objective Selection Process for the Allocation of Spectrum Use Permits in IMT Bands. 2020. Available online: https://mintic.gov.co/portal/715/articles-146624_resolucion_1322_20200727_soporte_tecnico.pdf (accessed on 2 April 2021).
- MinICT. By May 2021, 954 Rural Localities Will Have 4G Mobile Service, Announces Minister Karen Abudinen. Available online: https://mintic.gov.co/portal/inicio/Sala-de-Prensa/Noticias/161329:En-mayo-de-2021-954-localidades-de-zonas-rurales-tendran-servicio-movil-4G-anuncia-la-ministra-Karen-Abudinen (accessed on 3 October 2021).
- MinICT. Colombia Transition to New Technologies Plan. 2020. Available online: https://mintic.gov.co/portal/715/articles-145550_plan_transicion_nuevas_tecnologias_20200624a.pdf (accessed on 3 October 2021).
- GSMA. 5G Spectrum—GSMA Public Policy Position. 2021. Available online: https://www.gsma.com/spectrum/wp-content/uploads/2021/04/5G-Spectrum-Positions.pdf (accessed on 15 June 2021).
- 5G Americas. 5G Spectrum Vision. 2019. Available online: https://www.5gamericas.org/wp-content/uploads/2019/07/5G_Americas_5G_Spectrum_Vision_Whitepaper-1.pdf (accessed on 4 April 2021).
- Huawei 5G Spectrum—Public Policy Position; Huawei: Shenzhen, China, 2020.
- Cisco. Cisco Annual Internet Report. 2020. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf (accessed on 4 April 2021).
- DG Communications Networks, Content & Thecnology. Identification and Quantification of Key Socio-Economic Data to Support Strategic Planning for the Introduction of 5G in Europe. 2016. Available online: https://op.europa.eu/en/publication-detail/-/publication/2baf523f-edcc-11e6-ad7c-01aa75ed71a1/language-en (accessed on 29 March 2021).
- Zhang, L.; Liang, Y.; Xiao, M. Spectrum Sharing for Internet of Things: A Survey. IEEE Wirel. Commun. 2019, 26, 132–139. [Google Scholar] [CrossRef] [Green Version]
- National Planning Department. What Is the National Development Plan? Available online: https://www.dnp.gov.co/DNPN/Paginas/Que-es-el-Plan-Nacional-de-Desarrollo.aspx (accessed on 13 June 2021).
- National Planning Department. National Development Plan—Pact for Colombia, Pact for Equity; Colombia. 2019. Available online: https://colaboracion.dnp.gov.co/CDT/Prensa/Resumen-PND2018-2022-final.pdf (accessed on 8 August 2021).
- National Planning Department. Territorial Development Plans. Available online: https://pazvictimas.dnp.gov.co/Paz-con-enfoque-territorial/Paginas/pdt.aspx (accessed on 13 June 2021).
- Government of the Atlántico. Development Plan 2020–2023 “Atlántico for the People”. Available online: https://www.atlantico.gov.co/images/stories/plan_desarrollo/PlanDesarrollo_2020-2023-Definitivo-A1.pdf (accessed on 5 May 2021).
- AGRONET Atlántico. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ATL%C3%81NTICO_2017.pdf (accessed on 3 August 2021).
- SITUR Atlántico. Main Reason for Travel to the Department of Atlántico. Available online: https://www.situratlantico.com/indicadores/receptor (accessed on 25 June 2021).
- Directorate of Fishery and Aquaculture Chain Management. Bovine—Meat Chain. 2020. Available online: https://sioc.minagricultura.gov.co/Bovina/Documentos/2020-12-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).
- Directorate of Fishery and Aquaculture Chain Management. Pork Meat Chain. 2019. Available online: https://sioc.minagricultura.gov.co/Porcina/Documentos/2020-06-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).
- Directorate of Fishery and Aquaculture Chain Management. Poultry Chain. 2019. Available online: https://sioc.minagricultura.gov.co/Avicola/Documentos/2020-03-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).
- Directorate of Fishery and Aquaculture Chain Management. Aquaculture Chain. 2020. Available online: https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2020-12-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).
- Directorate of Fishery and Aquaculture Chain Management. Ovino-Caprina Chain. 2019. Available online: https://sioc.minagricultura.gov.co/OvinoCaprina/Documentos/2019-03-31%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).
- ACOLGEN. Map of Electricity Generation in Colombia. Available online: https://www.acolgen.org.co/mapa-generacion/ (accessed on 3 August 2021).
- Superintendence of Transportation Port Traffic in Colombia. 2021. Available online: https://www.supertransporte.gov.co/documentos/2021/Febrero/Puertos_04/BOLETIN-TRAFICO-PORTUARIO-2020.pdf (accessed on 3 August 2021).
- Office of Economic Studies Manufacturing Sector Report. 2021. Available online: https://www.mincit.gov.co/getattachment/estudios-economicos/estadisticas-e-informes/informes-de-industria/2021/enero/oee-dp-industria-manufacturera-enero-2021.pdf.aspx (accessed on 3 August 2021).
- Government of La Guajira. Departmental Development Plan of La Guajira “United for Change 2020–2023”. Available online: https://www.laguajira.gov.co/NuestraGestion/PlaneacionGestionyControl/PDM%202020.pdf (accessed on 3 August 2021).
- AGRONET La Guajira. Main Crops by Area Planted in 2017. 2017. Available online: https://www.agronet.gov.co/Documents/LA%20GUAJIRA_2017.pdf (accessed on 3 August 2021).
- Colombia Tourist Information Center National Statistics—National Natural Parks. 2021. Available online: https://citur.gov.co/estadisticas/df_parques_naturales/detalle/18?t=1#gsc.tab=0 (accessed on 3 August 2021).
- Directorate of Fishery and Aquaculture Chain Management. Equine, Donkey and Mule Chain. 2019. Available online: https://sioc.minagricultura.gov.co/Equino/Documentos/2019-03-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).
- Government of Bolívar. Development Plan for the Department of Bolivar 2020–2023 “Bolivar First”. Available online: https://www.asambleadebolivar.gov.co/servicios/2020/proyecto-de-ordenanza-plan-de-desarrollo-bolivar-2020-2023 (accessed on 18 June 2021).
- AGRONET Bolivar. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/BOL%C3%8DVAR_2017.pdf (accessed on 3 August 2021).
- SITUR Bolívar. Sites of Interest. Available online: http://www.siturbolivar.com/studies (accessed on 24 June 2021).
- Directorate of Fishery and Aquaculture Chain Management. Bee and Beekeeping Chain. 2019. Available online: https://sioc.minagricultura.gov.co/Apicola/Documentos/2019-03-30%20Cifras%20sectoriales.pdf (accessed on 3 August 2021).
- Government of Cesar. Departmental Development Plan 2020–2023 “We Do It Better”. Available online: http://cesar.gov.co/d/filesmain/plan_desarrollo/plan_de_desarrollo_2020_2023_lo_hacemos_mejor_act.pdf (accessed on 16 June 2021).
- AGRONET Cesar. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/CESAR_2017.pdf (accessed on 3 August 2021).
- Government of Cesar. Tourist Guide of the Department of Cesar. Available online: http://cesar.gov.co/d/index.php/es/mainmeneldpto/mengobtur (accessed on 23 June 2021).
- Government of Córdoba. Departmental Development Plan “Now It’s Córdoba’s Turn 2020–2023”. Available online: https://gobcordoba.micolombiadigital.gov.co/sites/gobcordoba/content/files/000057/2828_ordenanza-0009-plan-de-desarrollo-departamental--20202023--ahora-le-toca-a-cordoba--web.pdf (accessed on 21 June 2021).
- AGRONET Córdoba. Main Crops by Planted Area in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/C%C3%93RDOBA_2017.pdf (accessed on 3 August 2021).
- Government of Magdalena. Departmental Development Plan “Magdalena Renace 2020–2023”. Available online: https://magdalena.micolombiadigital.gov.co/sites/magdalena/content/files/000782/39075_plan-de-desarrollo-departamental-magdalena-renace-2020--2023-1.pdf (accessed on 21 June 2021).
- AGRONET Magdalena. Main Crops by Planted Area in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/MAGDALENA_2017.pdf (accessed on 3 August 2021).
- SITUR Magdalena. Attractions. Available online: https://www.siturmagdalena.com/quehacer/index?tipo=2 (accessed on 22 June 2021).
- Government of Sucre. Departmental Development Plan Sucre 2020–2023 “Sucre Diferente”. Available online: https://sucre.micolombiadigital.gov.co/sites/sucre/content/files/000833/41615_proyecto-de-ordenanza-por-la-cual-se-adopta-el-plan-departamental.pdf (accessed on 20 June 2021).
- AGRONET Sucre. Main Crops by Sembled Area. 2018. Available online: https://www.agronet.gov.co/Documents/SUCRE_2017.pdf (accessed on 3 August 2021).
- Government of Antioquia. Development Plan “United for Life 2020–2023”. Available online: https://plandesarrollo.antioquia.gov.co/archivo/PlanDesarrolloUNIDOS_VF-comprimido-min.pdf (accessed on 1 June 2021).
- Agricultural and Forestry Chain Directorate. Flower Chain. 2020. Available online: https://sioc.minagricultura.gov.co/Flores/Documentos/2019-12-30%20Cifras%20Sectoriales.pdf (accessed on 3 August 2021).
- AGRONET Antioquia. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ANTIOQUIA_2017.pdf (accessed on 3 August 2021).
- Government of Boyacá. Development Plan 2020–2023 “Social Pact for Boyacá: Land That Continues to Advance”. Available online: https://www.boyaca.gov.co/wp-content/uploads/2020/06/pdd2020-2023boy.pdf (accessed on 23 May 2021).
- Boyacá Tourism Information System. Tourist Map of Boyacá. Available online: https://situr.boyaca.gov.co/boyaca-es-para-vivirla/# (accessed on 25 June 2021).
- Government of Caldas. Development Plan 2020–2023 “United Is Possible”. Available online: https://docs.google.com/viewer?url=https://caldas.gov.co/index.php/inicio/mecanismos-de-control/transparencia-1/1494-plan-de-desarrollo-de-caldas-2020-2023/download?p=1 (accessed on 20 May 2021).
- AGRONET Caldas. Main Crops by Area Planted in 2017. Available online: https://www.agronet.gov.co/Documents/CALDAS_2017.pdf (accessed on 24 June 2021).
- Government of Cundinamarca. Departmental Development Plan 2020–2024 “Cundinamarca, Region That Progresses”. Available online: http://www.cundinamarca.gov.co/wcm/connect/37b90ffc-f445-462b-8faa-8a16f4427fe8/PLAN+DE+DESARROLLO+PLIEGOS1_compressed.pdf?MOD=AJPERES&CVID=njCfayi&CVID=njCfayi&CVID=njCfayi&CVID=njCfayi&CVID=njCfayi (accessed on 19 May 2021).
- Government of Huila. Departmental Development Plan 2020–2023 “Huila Crece”. Available online: https://www.huila.gov.co/documentos/1336/plan-de-desarrollo-2020-2023/ (accessed on 26 June 2021).
- AGRONET Huila. Main Crops by Sembled Area 2017. Available online: https://www.agronet.gov.co/Documents/HUILA_2017.pdf (accessed on 3 August 2021).
- Government of Norte de Santander. Development Plan for Norte de Santander 2020–2023. Available online: http://www.nortedesantander.gov.co/Portals/0/PDDNdS2020-2023(Ordenanza006de2020).pdf (accessed on 25 June 2021).
- Government of Norte de Santander. Tourism. Available online: http://www.nortedesantander.gov.co/Gobernación/Nuestro-Departamento/Turismo (accessed on 24 June 2021).
- Government of Quindio. Departmental Development Plan 2020–2023. Available online: https://www.quindio.gov.co/home/docs/items/item_100/PDD_2020_2023_TU_Y_YO_SOMOS_QUINDIO/PDD_QUINDIO_2020_2023_ORDENANZA_002_.pdf (accessed on 24 June 2021).
- AGRONET Quindio. Main Crops by Sembled Area 2017. 2018. Available online: https://www.agronet.gov.co/Documents/QUIND%C3%8DO_2017.pdf (accessed on 3 August 2021).
- Government of Quindio. Tourism in the Department of Quindio. Available online: https://www.quindio.gov.co/inicio-turismo (accessed on 25 June 2021).
- Government of Risaralda. Departmental Development Plan 2020–2023 “Risaralda, Feeling of All”. Available online: https://www.risaralda.gov.co/documentos/150205/documento-plan-de-desarrollo/ (accessed on 27 June 2021).
- AGRONET Risaralda. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/RISARALDA_2017.pdf (accessed on 3 August 2021).
- Government of Santander. Departmental Development Plan “Santander Always with You and for the World” 2020–2023. Available online: https://www.santander.gov.co/index.php/documentos-planeacion/send/2200-plan-de-desarrollo-2020-2023/18585-pdd-2020-2023-completo-pts-nna-aprobado (accessed on 27 June 2021).
- AGRONET Santander. Main Crops by Area Planted in 2017. Available online: https://www.agronet.gov.co/Documents/SANTANDER_2017.pdf (accessed on 25 June 2021).
- SITUR Santander. Main Reason for Travel. Available online: http://www.sitursantander.co/Estadisticas/Graficos (accessed on 25 June 2021).
- Government of Tolima. Development Plan “El Tolima Unites Us” 2020–2023. Available online: https://regioncentralrape.gov.co/wp-content/uploads/2020/05/Ordenanza-Plan-de-desarrollo-version-8.pdf (accessed on 27 June 2021).
- AGRONET Tolima. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/TOLIMA_2017.pdf (accessed on 3 August 2021).
- Government of Tolima. Tourism. Available online: https://www.tolima.gov.co/tolima/informacion-general/turismo (accessed on 26 June 2021).
- Government of Amazonas. Departmental Development Plan 2020–2023 “Progressing with Development”. Available online: http://www.amazonas.gov.co/noticias/plan-de-desarrollo-departamental-del-amazonas-20202023 (accessed on 22 June 2021).
- AGRONET Amazonas. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/AMAZONAS_2017.pdf (accessed on 3 August 2021).
- Government of Caquetá. Caquetá Departmental Development Plan. Available online: https://caqueta.micolombiadigital.gov.co/sites/caqueta/content/files/001016/50760_pdd-caqueta-20202023.pdf (accessed on 22 June 2021).
- Government of Guainía. Departmental Development Plan 2020–2023 “Guainía Opportunity for All”. Available online: https://guainia.micolombiadigital.gov.co/sites/guainia/content/files/000550/27454_documento-final-guainia-va1.pdf (accessed on 28 June 2021).
- Government of Guaviare. Departmental Development Plan 2020–2023 “Solutions at Your Service”. Available online: https://guaviare.micolombiadigital.gov.co/sites/guaviare/content/files/000705/35240_ordenanza-no-410-de-2020.pdf (accessed on 24 June 2021).
- AGRONET Guaviare. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/GUAVIARE_2017.pdf (accessed on 3 August 2021).
- Government of Guaviare. Tourism. Available online: http://www.guaviare.gov.co/tema/turismo/sitios-para-visitar (accessed on 26 June 2021).
- Government of Putumayo. Putumayo Departmental Development Plan 2020–2023 “Thirteen Municipalities, One Heart”. Available online: https://www.putumayo.gov.co/index.php?option=com_content&view=article&id=37 (accessed on 23 June 2021).
- AGRONET Putumayo. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/PUTUMAYO_2017.pdf (accessed on 3 August 2021).
- Government of Vaupés. Departmental Development Plan “Vaupés, Together We Can” 2020–2023. Available online: https://vaupes.micolombiadigital.gov.co/sites/vaupes/content/files/000483/24103_pdd-vaupes-juntos-podemos-20202023.pdf (accessed on 24 June 2021).
- Government of San Andres. Providencia and Santa Catalina Departmental Development Plan San Andres, Providencia and Santa Catalina Islands 2020–2023 “All for a New Beginning”. Available online: https://www.sanandres.gov.co/index.php/gestion/planeacion/plan-de-desarollo/plan-de-desarrollo-anuales/11524-plan-de-desarrollo-todos-por-un-nuevo-comienzo-2020-2023/file (accessed on 23 June 2021).
- Government of Cauca. Departmental Development Plan 2020–2023 “42 Motives to Advance”. Available online: https://www.cauca.gov.co/NuestraGestion/PlaneacionGestionyControl/PlandeDesarrolloDepartamental2020-2023.pdf (accessed on 1 May 2021).
- AGRONET Cauca. Main Crops by Area Planted in 2017. Available online: https://www.agronet.gov.co/Documents/CAUCA_2017.pdf (accessed on 28 April 2021).
- Government of Chocó. Departmental Development Plan “Chocó Generating Confidence” 2020–2023. Available online: https://choco.micolombiadigital.gov.co/sites/choco/content/files/000440/21975_plan-de-desarrollo-departamental-del-choco-20202023--version-final.pdf (accessed on 27 April 2021).
- Government of Nariño. Departmental Development Plan “My Nariño, in Defense of What Is Ours” 2020–2023. Available online: https://sitio.narino.gov.co/wp-content/uploads/2020/11/Plan_de_Desarrollo_Mi_Narino_en_Defensa_de_lo_Nuestro_2020-2023.pdf (accessed on 6 May 2021).
- AGRONET Nariño. Main Crops by Areas Planted in 2017. Available online: https://www.agronet.gov.co/Documents/NARIÑO_2017.pdf (accessed on 1 May 2021).
- SITUR Nariño. Tourist Attractions. Available online: https://situr.narino.gov.co/atractivos-turisticos (accessed on 26 June 2021).
- Government of Valle del Cauca. Development Plan “Invincible Valle” 2020–2023. Available online: https://www.valledelcauca.gov.co/loader.php?lServicio=Tools2&lTipo=viewpdf&id=48214 (accessed on 29 April 2021).
- AGRONET Valle del Cauca. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/VALLE%20DEL%20CAUCA_2017.pdf (accessed on 3 August 2021).
- Government of Arauca. Arauca Departmental Participative Development Plan “Building the Future” 2020–2023. Available online: https://www.arauca.gov.co/mapa-red-hospitalaria-del-departamento-de-arauca/62-plan-de-desarrollo/2825-plan-de-desarrollo-departamental-2020-2023 (accessed on 7 May 2021).
- AGRONET Arauca. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/ARAUCA_2017.pdf (accessed on 3 August 2021).
- Government of Casanare. Development Plan 2020–2023. It Is Time for Productive, Equitable and Sustainable Casanare. Available online: https://www.casanare.gov.co/NuestraGestion/PlaneacionGestionyControl/ORDENANZA%20002-2020%20PLAN%20DE%20DESARROLLO.pdf (accessed on 5 May 2021).
- AGRONET Casanare. Main Crops by Areas Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/CASANARE_2017.pdf (accessed on 3 August 2021).
- Government of Meta. Departmental Economic and Social Development Plan “Let’s Make Meta Great” 2020–2023. Available online: https://asambleameta.micolombiadigital.gov.co/sites/asambleameta/content/files/000189/9449_ordenanza-1069-de-mayo-30-de-2020.pdf (accessed on 24 April 2021).
- AGRONET Meta. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/META_2017.pdf (accessed on 3 August 2021).
- Government of Vichada. Departmental Development Plan “Work for All of Vichada” 2020–2023. Available online: https://vichada.micolombiadigital.gov.co/sites/vichada/content/files/000331/16528_plan-de-desarrollo-aprobado-ordenanza.pdf (accessed on 30 April 2021).
- AGRONET Vichada. Main Crops by Area Planted in 2017. 2018. Available online: https://www.agronet.gov.co/Documents/VICHADA_2017.pdf (accessed on 3 August 2021).
- DANE Technical Bulletin GDP IV Quarter 2020; Bogota. 2021. Available online: https://www.dane.gov.co/files/investigaciones/boletines/pib/bol_PIB_IVtrim20_producion_y_gasto.pdf (accessed on 3 August 2021).
- Maroto-Molina, F.; Navarro-García, J.; Príncipe-Aguirre, K.; Gómez-Maqueda, I.; Guerrero-Ginel, J.; Garrido-Varo, A.; Pérez-Marín, D. A Low-Cost IoT-Based System to Monitor the Location of a Whole Herd. Sensors 2019, 19, 2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gattani, A.; Singh, S.V.; Agrawal, A.; Khan, M.; Singh, P. Recent progress in electrochemical biosensors as point of care diagnostics in livestock health. Anal. Biochem. 2019, 579, 25–34. [Google Scholar] [CrossRef]
- Yang, S.J.; Xiao, N.; Li, J.Z.; Feng, Y.; Ma, J.Y.; Quzhen, G.S.; Yu, Q. A remote management system for control and surveillance of echinococcosis: Design and implementation based on internet of things. Infect. Dis. Poverty 2021, 10, 50. [Google Scholar] [CrossRef]
- Raj, R.; Kola, K.; Bojja, P.; Raja, P. Optimal Technique of Tumor Detection and Prediction of Livestock by Deep Neural Network with TensorFlow and Keras. In Proceedings of the International Conference of Modern Applications on Information and Communication Technology (ICMAICT), Baghdad, Iraq, 8–9 December 2021; Volume 1804. [Google Scholar]
- Akhigbe, B.I.; Munir, K.; Akinade, O.; Akanbi, L.; Oyedele, L.O. IoT Technologies for Livestock Management: A Review of Present Status, Opportunities, and Future Trends. Big Data Cogn. Comput. 2021, 5, 10. [Google Scholar] [CrossRef]
- Quintero, J. IoT Device for the Control of Livestock Identification and Mobility; National University of Colombia: Bogota, Colombia, 2020. [Google Scholar]
- Ariza-Colpas, P.; Morales-Ortega, R.; Piñeres-Melo, M.; Melendez-Pertuz, F.; Serrano-Torne, G.; Hernandez-Sanches, G.; Martínez-Osorio, H. Teleagro: IOT Applications for the Georeferencing and Detection of Zeal in Cattle. In Proceedings of the 18th International Conference, CISIM 2019, Belgrade, Serbia, 19–21 September 2019; pp. 232–239. [Google Scholar]
- Ministry of Commerce. 2019 Tourism in Colombia Breaks Records. Available online: https://www.mincit.gov.co/prensa/noticias/turismo/en-2019-el-turismo-en-colombia-rompio-records (accessed on 28 June 2021).
- Alcaldía de Santiago de Cali. Turismo de Salud. Available online: https://www.cali.gov.co/turismo/publicaciones/139222/turismo-de-salud-/ (accessed on 2 May 2021).
- ANDI. Colombia: Regional Leader in the Export of Healthcare Services. Available online: http://www.andi.com.co/Home/Noticia/7356-colombia-lider-regional-en-la-exportacio (accessed on 28 June 2021).
- Mayor’s Office of Barranquilla. The Health Cluster, a New Reality That Potentiates Barranquilla’s Image to the World. Available online: https://www.barranquilla.gov.co/salud/el-cluster-en-salud-nueva-realidad-que-potencializa-al-mundo-la-imagen-de-barranquilla (accessed on 28 June 2021).
- Wang, W.; Kumar, N.; Chen, J.; Gong, Z.; Kong, X.; Wei, W.; Gao, H. Realizing the Potential of the Internet of Things for Smart Tourism with 5G and AI Smart Tourism. IEEE Netw. 2020, 34, 295–301. [Google Scholar] [CrossRef]
- Sharma, S.; Rishi, O.; Sharma, A. IoTeST: IoT-Enabled Smart Tourism—Shaping the Future of Tourism. In Rising Threats in Expert Applications and Solutions; Springer: Singapore, 2020; pp. 569–576. ISBN 978-981-15-6014-9. [Google Scholar]
- Lerario, A.; Varasano, A. An IoT Smart Infrastructure for S. Domenico Church in Matera’s “Sassi”: A Multiscale Perspective to Built Heritage Conservation. Sustainability 2020, 12, 6553. [Google Scholar] [CrossRef]
- Peng, R.; Lou, Y.; Kadoch, M.; Cheriet, M. A human-guided machine learning approach for 5g smart tourism iot. Electronics 2020, 9, 947. [Google Scholar] [CrossRef]
- Gao, H. Big Data Development of Tourism Resources Based on 5G Network and Internet of Things System. Microprocess. Microsyst. 2021, 80, 103567. [Google Scholar] [CrossRef]
- Kachniewska, M. Smart Tourism: Towards the Concept of a Data-Based Travel Experience. In Handbook of Sustainable Development and Leisure Services; Springer: Cham, Switzerland, 2021; pp. 289–302. ISBN 978-3-030-59819-8. [Google Scholar]
- Davoli, L.; Paraskevopoulos, I.; Campanella, C.; Bauro, S.; Vio, T.; Abrardo, A.; Ferrari, G. Ultrasonic-based environmental perception for mobile 5g-oriented xr applications. Sensors 2021, 21, 1329. [Google Scholar] [CrossRef]
- Siriwardhana, Y.; De Alwis, C.; Gur, G.; Ylianttila, M.; Liyanage, M. The Fight against the COVID-19 Pandemic with 5G Technologies. IEEE Eng. Manag. Rev. 2020, 48, 72–84. [Google Scholar] [CrossRef]
- Al-Maroof, R.S.; Akour, I.; Aljanada, R.; Alfaisal, A.M.; Alfaisal, R.M.; Aburayya, A.; Salloum, S.A. Acceptance determinants of 5G services. Int. J. Data Netw. Sci. 2021, 5, 613–628. [Google Scholar] [CrossRef]
- Mendoza, R.; Cabarcas, A.; Arnedo, B. Mixed Reality to Promote Cultural Tourism in La Merced Cloister in Cartagena Colombia. In Advances in Tourism, Technology and Systems; Smart Innovation, Systems and Technologies Series; Springer: Cartagena, Colombia, 2021; Volume 209. [Google Scholar]
- Pereira, J.; Díaz, J. Prototype of a Tourist Mobile Application for the City of Bucaramanga Implementing Augmented Reality; Universidad Autónoma de Bucaramanga: Bucaramanga, Colombia, 2020. [Google Scholar]
- Psiha, M.; Vlamos, P. IoT Applications with 5G Connectivity in Medical Tourism Sector Management: Third-Party Service Scenarios. Adv. Exp. Med. Biol. 2017, 989, 141–154. [Google Scholar] [CrossRef]
- AGRONET. Low Productivity in the Land and Appearance of Pests May Be Effects of El Niño. 2018. Available online: https://www.agronet.gov.co/Noticias/Paginas/Baja-productividad-en-la-tierra-y-aparici%C3%B3n-de-plagas-pueden-ser-efectos-del-ni%C3%B1o.aspx (accessed on 2 May 2021).
- Mateos Matilla, D.; Lozano Murciego, Á.; Jimenez Bravo, D.M.; Sales Mendes, A.; Quietinho Leithardt, V.R. Low cost center pivot irrigation monitoring systems based on IoT and LoRaWAN technologies. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor 2020), Trento, Italy, 4–6 November 2020; pp. 262–267. [Google Scholar]
- Nawandar, N.K.; Satpute, V.R. IoT based low cost and intelligent module for smart irrigation system. Comput. Electron. Agric. 2019, 162, 979–990. [Google Scholar] [CrossRef]
- Lin, N.; Wang, X.; Zhang, Y.; Hu, X.; Ruan, J. Fertigation management for sustainable precision agriculture based on Internet of Things. J. Clean. Prod. 2020, 277, 124119. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Irrigation of greenhouse crops. Horticulturae 2019, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Benyezza, H.; Bouhedda, M.; Rebouh, S. Zoning irrigation smart system based on fuzzy control technology and IoT for water and energy saving. J. Clean. Prod. 2021, 302, 127001. [Google Scholar] [CrossRef]
- Guo, X. Application of agricultural IoT technology based on 5 G network and FPGA. Microprocess. Microsyst. 2021, 80, 103597. [Google Scholar] [CrossRef]
- Hu, H.; Vocational, Y.; Chen, Z.; Science, I.; Wu, P.W.; Science, I. Internet of Things-Enabled Crop Growth Monitoring System for Smart Agriculture. Int. J. Agric. Environ. Inf. Syst. 2021, 12, 30–48. [Google Scholar] [CrossRef]
- Said Mohamed, E.; Belal, A.A.; Kotb Abd-Elmabod, S.; El-Shirbeny, M.A.; Gad, A.; Zahran, M.B. Smart farming for improving agricultural management. Egypt. J. Remote Sens. Space Sci. 2021, in press. [Google Scholar] [CrossRef]
- Wan-Soo, K.; Won-Suk, W.; Yong-Joo, K. A Review of the Applications of the Internet of Things (IoT) for Agricultural Automation. J. Biosyst. Eng. 2020, 45, 385–400. [Google Scholar] [CrossRef]
- Hincapie, E.; Sánchez, J.; Carbonell, J. IoT Network Applied to Agriculture: Monitoring Stations for Irrigation Management in Soils Cultivated with Sugarcane. In Proceedings of the Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II, AACC 2018, Cali, Colombia, 21–23 November 2018; Springer: Cham, Switzerland, 2018; pp. 249–260. [Google Scholar]
- Cohen-Manrique, C.; Burbano-Bustos, A.; Salgado-Ordosgoitia, R.; Merlano-Porto, R. Irrigation control in ahuyama crops in Sincelejo, Sucre (Colombia) managed through the Internet of Things (IoT). Inf. Tecnol. 2020, 31, 79–88. [Google Scholar] [CrossRef]
- Nuñez, J.; Fonthal, F.; Quezada, Y. Design and Implementation of WSN and IoT for Precision Agriculture in Tomato Crops. In Proceedings of the 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 22–24 August 2018; pp. 1–5. [Google Scholar]
- Tang, Y.; Dananjayan, S.; Hou, C.; Guo, Q.; Luo, S.; He, Y. A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Comput. Electron. Agric. 2021, 180, 105895. [Google Scholar] [CrossRef]
- Cama-Pinto, D.; Holgado-Terriza, J.A.; Damas-Hermoso, M.; Gómez-Mula, F.; Cama-Pinto, A. RadioWave Attenuation Measurement System Based on RSSI for Precision Agriculture: Application to Tomato Greenhouses. Inventions 2021, 6, 66. [Google Scholar] [CrossRef]
- Selem, E.; Fatehy, M. E-Health applications over 5G networks: Challenges and state of the art. In Proceedings of the 2019 6th International Conference on Advanced Control Circuits and Systems (ACCS) & 2019 5th International Conference on New Paradigms in Electronics & information Technology (PEIT), Hurgada, Egypt, 17–20 November 2019; pp. 111–118. [Google Scholar]
- Casquero Jiménez, A.; Pérez Martínez, J. 5G networks in eHealth services in Spain: Remote patient monitoring system. In Proceedings of the 2020 IEEE Engineering International Research Conference (EIRCON), Lima, Peru, 21–23 October 2020; pp. 20–23. [Google Scholar]
- Emokpae, L.; Emokpae, R.; Lalouani, W.; Younis, M. Smart Multimodal Telehealth-IoT System for COVID-19 Patients. IEEE Pervasive Comput. 2021, 20, 73–80. [Google Scholar] [CrossRef]
- Rokonuzzaman, M.; Hossain, I.M.; Islam, T.; Sarkar, P.P.; Islam, R.M.; Amin, N. Design and Implementation of Telehealth Device: Linking IoT Sensors to Cloud Networks. In Proceedings of the 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Langkawi Island, Malaysia, 1–3 March 2021; pp. 281–285. [Google Scholar]
- Gupta, N.; Juneja, P.K.; Sharma, S.; Garg, U. Future aspect of 5G-IoT architecture in smart healthcare system. In Proceedings of the 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 406–411. [Google Scholar] [CrossRef]
- Braeken, A.; Liyanage, M. Highly efficient key agreement for remote patient monitoring in MEC-enabled 5G networks. J. Supercomput. 2021, 77, 5562–5585. [Google Scholar] [CrossRef]
- López, F.; Bonfante, M.C.; Gonzalez, I.; Muñoz, R. IoT and big data in public health: A case study in Colombia. In Protocols and Applications for the Industrial Internet of Things; IGI Global: Hershey, PA, USA, 2018; pp. 309–321. [Google Scholar]
- Bolívar, N.; Cangrejo, L.; Salcedo, O. eHeart-BP, Prototype of the Internet of Things to Monitor Blood Pressure. In Proceedings of the 2019 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Arlington, VA, USA, 25–27 September 2019; pp. 58–63. [Google Scholar]
- Hernández-Hernández, G.; Romero-Garavito, M.; Rodríguez-Manrique, J. The prototype of IoT Technological Infrastructure for Monitoring Vital Signs in Patients in an Emergency Department. In Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, Lima, Peru, 18–20 July 2018. [Google Scholar]
- Huertas, T. Biomedical IoT Device for Self-Monitoring Applications. In Proceedings of the 7th Latin American Congress on Biomedical Engineering, CLAIB 2016, Bucaramanga, Colombia, 26–28 October 2016; pp. 357–360. [Google Scholar]
- Haider, D.; Yang, X.; Hussain, Q. Post-surgical fall detection by exploiting the 5G C-Band technology for eHealth paradigm. Appl. Soft Comput. J. 2019, 81, 105537. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, G.; Du, H.; Yuan, X.; Kadoch, M. Real-Time Remote Health Monitoring System Driven by 5G MEC-IoT. Electronics 2020, 9, 1753. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Hossan, T.; Shanjalal, M.; Hasan, K.; Jang, Y.M. A New 5G eHealth Architecture Based on Optical Camera Communication: An Overview, Prospects, and Applications. IEEE Consum. Electron. Mag. 2020, 9, 23–33. [Google Scholar] [CrossRef]
- Artemenko, A.; Gmbh, R.B. Keynote: Advances and Challenges of Industrial IoT. In Proceedings of the PerIoT 2021, 5th International Workshop on Mobile and Pervasive Internet of Things, Kassel, Germany, 26 March 2021; p. 526. [Google Scholar]
- Khatib, E.J.; Barco, R. Optimization of 5G Networks for Smart Logistics. Energies 2021, 14, 1758. [Google Scholar] [CrossRef]
- Varsier, N.; Dufrène, L.; Dumay, M.; Lampin, Q.; Schwoerer, J. A 5G New Radio for Balanced and Mixed IoT Use Cases: Challenges and Key Enablers in FR1 Band. IEEE Commun. Mag. 2021, 59, 82–87. [Google Scholar] [CrossRef]
- Varga, P.; Peto, J.; Franko, A.; Balla, D.; Haja, D.; Janky, F.; Soos, G.; Ficzere, D.; Maliosz, M.; Toka, L. 5G Support for Industrial Iot Applications—Challenges, Solutions, and Research Gaps. Sensors 2020, 20, 828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eit Digital. Ericsson Define the Future of the Industrial IoT. Available online: https://www.eitdigital.eu/fileadmin/files/2017/events/innovationdays/netherlands/Etienne_Scholl_-_Beyond_communication__the_digital_business_potential_of_5G.pdf (accessed on 15 October 2021).
- Superintendencia de Industria y Comercio. The Internet of Things (IoT) Impacting the Logistics Sector. Available online: https://www.sic.gov.co/sites/default/files/files/pdf/Boletin_IoT(1).pdf (accessed on 9 March 2019).
- Segura, D.; Khatib, E.; Munilla, J.; Barco, R. 5G Numerologies Assessment for URLLC in Industrial Communications. Sensors 2021, 21, 2489. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Zhang, C.; Tan, X.; Jin, S.; Wu, H. AI for 5G: Research directions and paradigms. Sci. China 2019, 62, 21301. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Environment. Deforestation in Meta, Caquetá and Guaviare Decreases by 30% during the First Quarter of 2021. Available online: https://www.minambiente.gov.co/index.php/noticias/5189-disminuye-en-un-30-porciento-la-deforestacion-en-el-meta-caqueta-y-guaviare-durante-primer-trimestre-del-ano (accessed on 8 June 2021).
- AWS. Tackling Deforestation in Colombia with IoT at the 2019 Zoo Hackathon. Available online: https://aws.amazon.com/es/blogs/publicsector/tackling-deforestation-colombia-zoo-hackathon/ (accessed on 2 May 2021).
- Naveenraj, M.; Jeevabarathi, C.T.; Srinivasan, R. Iot based anti-poaching alarm system for trees in forest. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 193–195. [Google Scholar]
- Medellín, P. Deforestation by Fires in the Orinoquia and Amazonia Affect Air Quality in Bogota and Other Major Cities. Available online: http://ieu.unal.edu.co/en/medios/noticias-del-ieu/item/la-deforestacion-por-incendios-en-la-orinoquia-y-la-amazonia-afectan-la-calidad-del-aire-de-bogota-y-otras-grandes-ciudades (accessed on 8 June 2021).
- Sahal, R.; Alsamhi, S.; Breslin, J.; Intizar Ali, M. Industry 4.0 towards Forestry 4.0: Fire Detection Use Case. Sensors 2021, 21, 694. [Google Scholar] [CrossRef]
- Khan, I.; Ahmad, S.; Kim, D.H. A Task Orchestration Approach for Efficient Mountain Fire Detection Based on Microservice and Predictive Analysis in IoT Environment. J. Intell. Fuzzy Syst. 2021, 40, 5681–5696. [Google Scholar] [CrossRef]
- Nguyen-Anh, T.; Le-Trung, Q. Prediction of Forest Fire Risk to Trigger IoTs Reconfiguration Action. In Proceedings of the 2020 7th NAFOSTED Conference on Information and Computer Science (NICS), Ho Chi Minh, Vietnam, 26–27 November 2020; pp. 19–24. [Google Scholar]
- Das, P.; Ghosh, S.; Chatterjee, S.; De, S. Energy Harvesting-enabled 5G Advanced Air Pollution Monitoring Device. In Proceedings of the 2020 IEEE 3rd 5G World Forum, (5GWF 2020), Bangalore, India, 10–12 September 2020; pp. 218–223. [Google Scholar] [CrossRef]
Application | Aplication Domain | Tolerable Delay | Update Frecuency | Data Rate |
---|---|---|---|---|
Structural health | Smart city | 30 min | 10 min | Low |
Waste management | Smart city | 30 min | 1 h | Low |
Video Surveillance | Smart city | Seconds | Real time | High |
Air Quality Monitoring | Smart home | 5 min | 30 min | Low |
Monitoring and supervision | Industrial | Seconds or ms | Seconds | Low |
Closed loop control | Industrial | Milliseconds | Milliseconds | Low |
Interlocking and control | Industrial | Milliseconds | Milliseconds | Low |
Patient’s healthcare delivery and monitoring | Healthcare | Low (seconds) | 1 Report per hour day | High |
Real-time emergency response and remote diagnostics | Healthcare | Low (seconds) | Requires Ad-hoc emergency communication | High |
Country | Bands Auctioned | Expectation | References |
---|---|---|---|
USA | 3.7 GHz, 24 GHz, 28 GHz, 37 GHz, 39 GHz, 47 GHz | Auction the 2.5 GHz and 3.45 GHz bands | [19,20] |
Spain | 3.6 GHz–3.8 GHz | Auction the 700 MHz and 26 GHz bands | [21] |
Greece | 700 MHz, 2 GHz, 3.4–3.8 GHz, 26 GHz | Public inquiries for the 1.5 GHz, 2.1 GHz, 2.3 GHz bands | [22] |
Sweden | 2.3 GHz, 3.5 GHz | Have the band from 3.72 GHZ to 3.8 GHz | [23] |
United Kingdom | Not assigned | Auction 700 MHz and 3.6 to 3.8 GHz bands | [24] |
Japan | 3.7 GHz, 4.5 GHz, 28 GHz | Assignment of the 28.3 GHz and 29.1 GHz bands | [25] |
Band Type | Bands | Current Usage | Advantages | Disadvantages |
---|---|---|---|---|
Less than 1 GHz | 614–698 MHz | Broadcasting and mobile service | Greater coverage than frequencies above 1 GHz | Lower channel capacity (bps) than frequencies above 1 GHz |
698–806 MHz | Mobile service | |||
Between 1 and 6 GHz | 3.3–3.4 GHz | Mobile service | Balance between coverage and capacity | Saturated spectrum for mobile and wireless services |
3.4–3.6 | Fixed service, mobile service, and satellite service | |||
3.6–3.7 GHz | Fixed service, mobile service, and satellite service | |||
Over 6 GHz | 24.25–27.5 GHz | Fixed service, mobile service, and radio navigation | Channel availability increased and spectrum saturation reduced | Lower coverage than other bands aforementioned |
26.5–29.5 GHz | Fixed service, mobile service, and satellite service | |||
31.8–33.4 GHz | Fixed service, radio navigation, and space research | |||
37–40.5 GHz | Fixed service, mobile service, and satellite service | |||
40.5–42.5 GHz | Fixed service, mobile service, satellite service, and broadcasting | |||
42.5–43.5 GHz | Fixed service, mobile service, satellite service, and radio astronomy | |||
45.5–47 GHz | Mobile service, satellite service, and radio navigation | |||
47–47.2 GHz | Amateur | |||
47.2–50.2 GHz | Fixed service, mobile service, and satellite service | |||
50.4–52.6 GHz | Fixed service, mobile service, and satellite service | |||
66–71 GHz | Fixed service, mobile service, satellite service, and radio navigation | |||
71–76 GHz | Fixed service, mobile service, satellite service, and broadcasting | |||
81–86 GHz | Fixed service, mobile service, satellite service, and radio astronomy |
The Caribbean Region | |||||||
---|---|---|---|---|---|---|---|
Department | Agriculture | Tourism | Cattle Raising | Health | Industry | Environmental | References |
Atlántico | Corn, yucca, mango, citrus, pigeon pea, sorghum, melon | Health tourism, Barranquilla Carnival, Barranquilla Zoo, Santa Verónica beaches | Fish farming, poultry farming, cattle, pigs, sheep | Mortality from malignant tumors, mortality from ischemic heart diseases | Manufacturing, cement, agribusiness, chemical, port, electricity generation | Erosion, contamination of water sources, floods, forest fires | [47,48,49,50,51,52,53,54,55,56,57] |
Guajira | Corn, coffee, yucca, rice, banana, bean, oil palm | Natural parks | Aquaculture, goats, sheep, equine cattle, fish farming | Communicable diseases, diseases of the circulatory system | Mining, port electricity generation, salinera | Desertification | [50,54,55,56,58,59,60,61] |
Bolívar | Corn, oil palm, yucca, rice, yam, banana, cocoa, avocado | Hotels, historic center of Cartagena, historic center of Mompox, fairs and events, beaches, Totumo Volcano, Salinas de Galerazamba | Fish farming, poultry farming, beekeeping, cattle, equine cattle, sheep cattle | Ischemic diseases, diseases of the circulatory system, hypertension, cardio-cerebrovascular diseases | Agribusiness, manufacturing, petrochemical mining, port, electricity generation | Greenhouse gas (GHG) emissions, impacts of climate change in coastal areas, natural phenomena | [50,52,53,54,55,56,57,61,62,63,64,65] |
Cesar | Palm oil, yucca, banana, rice, corn, pin, melon | Vallenato festival, ecotourism and ethno-tourism in the Sierra Nevada de Santa Marta and Serranía del Perijá, Ciénaga De la Zapatosa | Sheep, goat, cattle, fish farming, poultry | Maternal mortality, infant mortality from Acute respiratory infection (ARI), infant mortality from acute diarrheal disease (ADD) | Mining, agribusiness | Impact by climate change, impact by natural disasters, deforestation | [50,52,53,54,66,67,68] |
Córdoba | Corn, banana, yucca, rice, yam, cotton, oil palm, cocoa | Ciénagas, Montería cattle fair, joint festival in San Pelayo natural parks, Gulf of Morrosquillo beaches | Cattle, pigs, equine cattle, sheep, goats, poultry, aquaculture, fish farming, beekeeping | High operational costs due to geographic conditions, ADD, obesity, diabetes, high blood pressure | Agribusiness, mining, electricity generation | Air pollution from mining exploitation, GHG emissions, deforestation, illegal hunting | [50,51,52,53,54,55,61,65,69,70] |
Magdalena | Palm oil, corn, yucca, banana, coffee, citrus, mango, plantain | Hotels, Tayrona Park, Sierra Nevada de Santa Marta National Natural Park, Santa Marta and El Rodadero beaches, ecotourism | Marine fishing, cattle, sheep, poultry, fish farming | ARI, ADD, genitourinary diseases, cardiovascular diseases | Manufacturing, port industry | Deforestation, inappropriate land use | [50,52,53,54,60,71,72,73] |
Sucre | Rice, yucca, corn, yam, banana, oil palm, pin | Gulf of Morrosquillo Beaches, January 20 festivities in Sincelejo, San Bernardo Islands Archipelago | Cattle, equine cattle, pigs, poultry, fish farming, beekeeping | ADD, ARI, dengue | Agroindustry, mining, cement industry, port industry | Illegal hunting, over exploitation of water sources, forest fires, deforestation, soil deterioration, pesticide contamination | [50,51,56,61,65,74,75] |
Andean Region | |||||||
Department | Agriculture | Tourism | Cattle raising | Health | Industry | Environmental | References |
Antioquia | Coffee, banana, cane, plantain, cocoa, corn, rice, flowers | Flower Festival, hotels, ecotourism, cultural tourism, health tourism | Swine, cattle, equine cattle, sheep, goats, poultry, fish farming, beekeeping | Cardiovascular diseases, respiratory diseases, hypertension, infrastructure problems | Manufacturing industry, agribusiness, mining, Center for the Fourth Industrial Revolution, electricity generation, port industry | GHG emissions, climate change risks, deforestation, illegal hunting | [50,51,52,54,55,57,61,65,76,77,78] |
Boyacá | Potato, vegetables, cocoa, fruit trees, panelera cane, quinoa, cereals | Villa de Leyva, Chicamocha Canyon, Tunja, El Cocuy National Natural Park, Tota Lake. | Cattle, sheep-goat, beekeeping, poultry, pig and fish farming. | Diseases of the circulatory system, neoplasms | Agribusiness, mining, manufacturing industry, electricity generation | Deforestation, risks due to climate change | [50,52,53,54,57,65,79,80] |
Caldas | Coffee, banana, panelera cane, avocado, citrus, cocoa, sugarcane | Coffee cultural landscape, avitourism, nature tourism, hot springs | Cattle, swine, fish farming, poultry farming, | Diseases of the circulatory system, diabetes mellitus | Agribusiness, metalworking industry, manufacturing industry, textile industry, electricity generation | Soil loss due to various anthropic activities, water bodies affected by discharges. deforestation | [50,51,52,53,55,57,81,82] |
Cundinamarca | Potato, carrot, tomato, onion, lettuce, Corn, banana, sugar cane, flowers | Hotels, ecotourism, natural parks, forest reserves. | Cattle farming, sheep farming, goat farming, equine farming, pig farming, poultry farming, fish farming, beekeeping | Lack of insurance and access to health services in the municipalities | Manufacturing industry, agribusiness, chemical industry, electricity generation | Degradation of water reserve areas, risks due to climate change, forest fires, contamination of water sources | [50,51,52,53,54,55,57,61,65,77,83] |
Huila | coffee, rice, banana, beans, corn, sugar cane, cocoa, yucca | Archaeological tourism in San Agustín, nature tourism in the Tatacoa desert, ecotourism | Cattle, swine, fish farming, poultry farming, beekeeping | Diseases of the circulatory system, neoplasms, ARI in children under 5 years of age, ADD | Agribusiness, mining, electricity generation | Impacts of climate change, contamination of water sources, loss of strategic ecosystems | [50,51,52,53,55,65,84,85] |
Norte de Santander | Coffee, cocoa, oil palm, sugar cane, banana, avocado, rice, beans | Ecotourism, Villa del Rosario | Cattle, equine cattle, pigs, sheep, goats, poultry | Access to health in rural areas is limited, leprosy, malaria, dengue | Agribusiness, manufacturing industry, electricity generation | Pollution of water sources, deforestation | [50,51,53,54,55,61,86,87] |
Quindío | Banana, coffee, citrus, avocado, banana | Parque del Café, coffee cultural landscape, ecotourism | Poultry, swine, cattle | They need to strengthen the hospital network | Agroindustry | Deforestation | [50,51,52,88,89,90] |
Risaralda | Coffee, banana, avocado, sugarcane, corn, beans, tomato, onion and various vegetables | Coffee cultural landscape, natural parks, ecotourism, hot springs of Santa Rosa and San Vicente | Cattle, pig farming, fish farming, poultry farming | Diseases of the circulatory system, neoplasms, diseases of the respiratory system | Agribusiness, manufacturing industry, | Deforestation, contamination of water sources, loss of soil, air pollution, illegal hunting | [51,52,53,57,91,92] |
Santander | Palm oil, cocoa, coffee, sugarcane, citrus, banana, rubber, pineapple, Yucca | Barichara, San Gil, Chicamocha National Park, natural parks, ecotourism, health tourism | Cattle, pig, equine, goat, sheep, poultry, fish farming | Heart disease and neoplasms are common causes of death. Public health strategies that stimulate sport will be worked on | Mining, oil, petrochemical, agribusiness, manufacturing, electricity generation, port | Deforestation, contamination of water sources | [50,51,52,53,54,55,56,57,61,93,94,95] |
Tolima | Coffee, rice, corn, banana, beans, sugar cane, avocado, cocoa, sugar cane, mango | Ecotourism, adventure tourism and historical tourism | Bovine, equine, ovine, pig and poultry farming, fish farming | ARI, ADD, syphilis, diseases of the circulatory system | Manufacturing industries, agribusiness, mining, electricity generation | Risks due to climate change, contamination of water sources, deforestation | [50,51,52,53,54,55,61,96,97,98] |
Amazon Region | |||||||
Department | Agriculture | Tourism | Cattle raising | Health | Industry | Environmental | References |
Amazonas | Yucca, banana, various fruit trees | Flor de Loto Nature Reserve, Los Micos Island, indigenous communities, Lagos de Tarapoto | Swine, poultry, fish farming | Leptospirosis, diabetes, high blood pressure | manufacture | Deforestation, risks due to climate change | [52,99,100] |
Caquetá | Banana, yucca, cocoa, rubber, coffee, cane, rice, corn | Ecotourism, adventure tourism, ethno-tourism | Cattle, swine, poultry, sheep | Lack of access to services, cardiovascular diseases, ARI | Agroindustry | Low quality of water for human consumption, contamination by chemical substances | [50,51,53,54,101] |
Guainía | Banana, yucca, corn, cocoa | Ecotourism, Puinawual Natural Reserve, Cerros de Manicure | Swine, poultry, fishing | Tuberculosis, ARI, ischemic heart disease | Mining | Deforestation, effects of climate change | [51,52,102] |
Guaviare | Corn, banana, yucca, rice, rubber, cane, cocoa | Ecotourism, Serranía de Chiribiquete Natural Park | Cattle, equine cattle, poultry | Lack of access to services, diabetes, | Mining, manufacturing industries | Deforestation | [52,61,103,104,105] |
Putumayo | Yucca, corn, cacao, cane, chontaduro, pepper, cacao, banana | Ecotourism | Poultry, cattle, equine cattle, pig farming, fish farming | Diseases of the circulatory system, ARI, HIV, intestinal infectious diseases | Mining, agribusiness | Deforestation, floods | [50,51,52,53,61,106,107] |
Vaupés | Yucca, cocoa | Ecotourism, ethno-tourism, nature reserves | Aquaculture | Lack of access to services, diseases of the circulatory system | Mining | Deforestation, forest fires | [108] |
Island Region | |||||||
Department | Agriculture | Tourism | Cattle raising | Health | Industry | Environmental | References |
San Andrés, Providencia y Santa Catalina | Coconut, yam, banana, yucca, corn | Hotels, beaches, ecotourism | Fishing, pigs, poultry | Obsolescence of infrastructure, diseases of the | Manufacturing, port | Effects of climate change, pollution of water sources, | [52,56,109] |
circulatory system, neoplasms | pollution of marine ecosystems | ||||||
Pacific Region | |||||||
Department | Agriculture | Tourism | Cattle raising | Health | Industry | Environmental | References |
Cauca | Sugar cane, coffee, banana, sugar cane, corn, yucca | Holy week Popayán | Cattle, equine cattle, sheep, pig farming, poultry farming, fish farming, beekeeping | ARI, ADD | Agribusiness, manufacturing, electricity generation | Deforestation. | [51,52,53,54,55,57,61,63,110,111] |
Chocó | Banana, corn, rice, cocoa and coconut. | Virgin beaches, ecotourism, adventure tourism. | Cattle, poultry farming, fish farming. | Lack of access to services. | Gold mining | Deforestation and water quality. | [50,52,53,112] |
Nariño | Coffee, potato, banana, cocoa, oil palm, sugar cane, pea, corn, coconut, beans | Black and white carnival, Our Lady of Las Lajas Sanctuary, Doña Juana Volcanic Complex Natural Park | Cattle, equine cattle, sheep, marine fishing, fish farming, pig farming, poultry farming | Child mortality | Mining, port | Deforestation | [50,51,52,53,54,55,61,113,114,115] |
Valle del Cauca | Sugar cane, coffee, banana, corn, sugar cane, citrus, plantain, rice, pineapple, avocado | Cali Fair, health tourism. | Cattle, poultry, swine, fish farming, beekeeping | Infant mortality, violence. | Agribusiness, manufacturing, rubber, port, chemical, electricity generation | Deforestation | [50,51,52,53,55,56,57,65,116,117] |
Orinoco Region | |||||||
Department | Agriculture | Tourism | Cattle raising | Health | Industry | Environmental | References |
Arauca | Banana, cocoa, rice, corn, yucca. | Natural parks, perpetual snow. | Cattle, sheep, poultry, fish farming | Deficiency in access to health services. | Agroindustry | Deforestation and disaster risk. | [50,52,53,54,118,119] |
Casanare | Rice, oil palm, coffee, corn, banana, Yucca | Eastern plains | Cattle, equine cattle, sheep, pig farming, poultry farming, fish farming | Deficiency in access to health services. | Agribusiness, mining | Deforestation. | [50,51,52,53,54,61,120,121] |
Meta | Palm oil, corn, sugar cane, rice, soy, banana. | Natural parks, caño crystals. | Fish farming, beekeeping, cattle, sheep, goats | Deficiency in access to health services. | Oil, electricity generation | Deforestation, sewage deficiencies. | [50,52,53,61,122,123] |
Vichada | Soy, corn, oil palm, cashew, yucca, rice, rubber, wood | Ecotourism, sport fishing, adventure tourism. | Bovine and buffalo livestock | Malnutrition | Agroindustry (forestry). Resin distillation | Deforestation | [50,124,125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrios-Ulloa, A.; Cama-Pinto, D.; Mardini-Bovea, J.; Díaz-Martínez, J.; Cama-Pinto, A. Projections of IoT Applications in Colombia Using 5G Wireless Networks. Sensors 2021, 21, 7167. https://doi.org/10.3390/s21217167
Barrios-Ulloa A, Cama-Pinto D, Mardini-Bovea J, Díaz-Martínez J, Cama-Pinto A. Projections of IoT Applications in Colombia Using 5G Wireless Networks. Sensors. 2021; 21(21):7167. https://doi.org/10.3390/s21217167
Chicago/Turabian StyleBarrios-Ulloa, Alexis, Dora Cama-Pinto, Johan Mardini-Bovea, Jorge Díaz-Martínez, and Alejandro Cama-Pinto. 2021. "Projections of IoT Applications in Colombia Using 5G Wireless Networks" Sensors 21, no. 21: 7167. https://doi.org/10.3390/s21217167
APA StyleBarrios-Ulloa, A., Cama-Pinto, D., Mardini-Bovea, J., Díaz-Martínez, J., & Cama-Pinto, A. (2021). Projections of IoT Applications in Colombia Using 5G Wireless Networks. Sensors, 21(21), 7167. https://doi.org/10.3390/s21217167