Surface Albedo and Temperature Models for Surface Energy Balance Fluxes and Evapotranspiration Using SEBAL and Landsat 8 over Cerrado-Pantanal, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Micrometeorological Data
2.3. Remote Sensing Data
2.4. Surface Albedo Models
2.4.1. Using Landsat 8 (OLI)
2.4.2. A Conventional Model
2.5. Surface Temperature () Correction Models
2.5.1. Correction Based on ATMCORR
2.5.2. Correction Based on the Single-Channel (SC) Model
2.5.3. Correction Based on the RTE Model
2.5.4. Correction Based on the Split-Window (SW) Model
2.6. Estimation of SEBFs and ET Using SEBAL
2.7. Evaluation Approach and Performance Indicators
- Developing a surface albedo model by combining MODIS and Landsat 8 dataset. A subset of the data was used for model development and the remaining was used to evaluate the model performance over different land cover types. In this analysis, the MODIS surface albedo by Liang et al. [17] was assumed to be as a reference against which to compare the developed and existing models.
- Comparing the performance of the of the developed surface albedo model with the currently used conventional model.
- Retrieving and evaluating land surface temperature based on four different methods. In this analysis, the model by Barsi, et al. [29] was assumed to be the reference against which to compare other retrieval methods. The comparison between the different retrieval methods was conducted over the sample sites.
- Evaluating the combined effects of the surface albedo models and the brightness temperature and temperature retrieval methods on SEBFs and ET. Since both variables (i.e., and ) are used in SEBAL model to estimate SEBFs and ET, a set of combinations of the two variables were developed as shown in Table 2 to identify these effects.
3. Results
3.1. Surface Albedo Model Based on the OLI Landsat 8
3.2. Retreival Models
3.3. SEBFs and ET Estimates Based on α and Combinations
4. Discussion
4.1. Surface Albedo Models Performance
4.2. Evaluation of Retrieval Models
4.3. The Effects of α and Retreival Models on SEBFs and ET
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Biudes, M.S.; Vourlitis, G.L.; Machado, N.G.; de Arruda, P.H.Z.; Neves, G.A.R.; de Almeida Lobo, F.; Neale, C.M.U.; de Souza Nogueira, J. Patterns of energy exchange for tropical ecosystems across a climate gradient in Mato Grosso, Brazil. Agric. Forest Meteorol. 2015, 202, 112–124. [Google Scholar] [CrossRef]
- Abrishamkar, M.; Ahmadi, A. Evapotranspiration estimation using remote sensing technology based on SEBAL algorithm. Iran. J. Sci. Technol. 2017, 41, 65–76. [Google Scholar] [CrossRef]
- Ning, J.; Gao, Z.; Xu, F. Effects of land cover change on evapotranspiration in the Yellow River Delta analyzed with the SEBAL model. J. Appl. Remote Sens. 2017, 11, 016009. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J. Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sens. Environ. 2020, 237, 111594. [Google Scholar] [CrossRef]
- Chang, Y.; Ding, Y.; Zhao, Q.; Zhang, S. Remote estimation of terrestrial evapotranspiration by Landsat 5 TM and the SEBAL model in cold and high-altitude regions: A case study of the upper reach of the Shule River Basin, China. Hydrol. Process. 2017, 31, 514–524. [Google Scholar] [CrossRef]
- Laipelt, L.; Ruhoff, A.L.; Fleischmann, A.S.; Bloedow Kayser, R.H.; Kich, E.; da Rocha, H.R.; Usher Neale, C.M. Assessment of an automated calibration of the SEBAL algorithm to estimate dry-season surface-energy partitioning in a forest-savanna transition in Brazil. Remote Sens. 2020, 12, 1108. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; Van Der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL): 2. Validation. J. Hydrol. 1998, 212–213, 213–229. [Google Scholar] [CrossRef]
- Machado, N.G.; Biudes, M.S.; Angelini, L.P.; Querino, C.A.S.; da Silva Angelini, P.C.B. Impact of Changes in surface cover on energy balance in a tropical city by remote sensing: A study case in Brazil. Remote Sens. Appl. Soc. Environ. 2020, 20, 100373. [Google Scholar] [CrossRef]
- Pavão, V.M.; Biudes, M.S.; Machado, N.G.; Querino, C.A.S. Effects of solar radiation and correction of surface temperature by net radiation estimates in northern pantanal. J. Appl. Remote Sens. 2018, 12, 1. [Google Scholar] [CrossRef]
- Tasumi, M.; Trezza, R.; Allen, R.G.; Wright, J.L. Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S. Irrig. Drain. Syst. 2005, 19, 355–376. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Danelichen, V.H.D.M.; Biudes, M.S.; Souza, M.C.; Machado, N.G.; Silva, B.B.D.; Nogueira, J.D.S. Estimation of soil heat flux in a neotropical wetland region using remote sensing techniques. Rev. Bras. Meteorol. 2014, 29, 469–482. [Google Scholar] [CrossRef] [Green Version]
- Tasumi, M.; Allen, R.G.; Trezza, R. At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. J. Hydrol. Eng. 2008, 13, 51–63. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Ramírez-Cuesta, J.M.; Kilic, A.; Allen, R.; Santos, C.; Lorite, I.J. Evaluating the impact of adjusting surface temperature derived from Landsat 7 ETM+ in crop evapotranspiration assessment using high-resolution airborne data. Int. J. Remote Sens. 2017, 38, 4177–4205. [Google Scholar] [CrossRef]
- Liang, S.; Fang, H.; Chen, M.; Shuey, C.J.; Walthall, C.; Daughtry, C.; Morisette, J.; Schaaf, C.; Strahler, A. Validating MODIS land surface reflectance and albedo products: Methods and preliminary results. Remote Sens. Environ. 2002, 83, 149–162. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Wang, D.; Shuai, Y.; Yu, Y. Fusion of satellite land surface albedo products across scales using a multiresolution tree method in the North Central United States. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3428–3439. [Google Scholar] [CrossRef]
- Liang, S.; Strahler, A.H.; Walthall, C. Retrieval of land surface albedo from satellite observations: A simulation study. J. Appl. Meteorol. 1999, 38, 712–725. [Google Scholar] [CrossRef]
- Liang, S.; Shuey, C.J.; Russ, A.L.; Fang, H.; Chen, M.; Walthall, C.L.; Daughtry, C.S.T.; Hunt, R. Narrowband to broadband conversions of land surface albedo: II. Validation. Remote Sens. Environ. 2003, 84, 25–41. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to broadband conversions of land surface albedo I algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Gal, L.; Grippa, M.; Hiernaux, P.; Peugeot, C.; Mougin, E.; Kergoat, L. Changes in lakes water volume and runoff over ungauged sahelian watersheds. J. Hydrol. 2016, 540, 1176–1188. [Google Scholar] [CrossRef]
- Quintano, C.; Fernandez-Manso, A.; Marcos, E.; Calvo, L. Burn severity and post-fire land surface albedo relationship in Mediterranean forest ecosystems. Remote Sens. 2019, 11, 2309. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Huang, X.; Zhou, D.; Ding, A. Biomass-burning-induced surface darkening and its impact on regional meteorology in Eastern China. Atmos. Chem. Phys. 2020, 20, 6177–6191. [Google Scholar] [CrossRef]
- Mutani, G.; Todeschi, V. The effects of green roofs on outdoor thermal comfort, urban heat island mitigation and energy savings. Atmosphere 2020, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Angelini, L.P.; Silva, P.C.B.S.E.; Fausto, M.A.; Machado, N.G.; Biudes, M.S. Balanço de energia nas condições de mudanças de uso do solo na Região Sul do estado de Mato Grosso. Rev. Bras. Meteorol. 2017, 32, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suárez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Li, Z.L.; Stoll, M.P.; Becker, F. Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with atsr data. Int. J. Remote Sens. 1996, 17, 2089–2114. [Google Scholar] [CrossRef]
- Barsi, J.A.; Barker, J.L.; Schott, J.R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. Int. Geosci. Remote Sens. Symp. (IGARSS) 2003, 5, 3014–3016. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Cristobal, J.; Sobrino, J.A.; Sòria, G.; Ninyerola, M.; Pons, X. Revision of the single-channel algorithm for land surface temperature retrieval from landsat thermal-infrared data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Jiménez-Munoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. Atmos. 2003, 108, 4688. [Google Scholar] [CrossRef] [Green Version]
- Sobrino, J.A.; Jiménez-Muñoz, J.C. Land surface temperature retrieval from thermal infrared data: An Assessment in the context of the surface processes and ecosystem changes through response analysis (SPECTRA) mission. J. Geophys. Res. D Atmos. 2005, 110, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Skokovic, D.; Sobrino, J.A.; Jimenez-Munoz, J.C. Vicarious calibration of the landsat 7 thermal infrared band and LST algorithm validation of the ETM+ instrument using three global atmospheric profiles. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1804–1811. [Google Scholar] [CrossRef]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction tool for single thermal band instruments. In Proceedings of the Earth Observing Systems X, San Diego, CA, USA, 31 July–4 August 2005; Volume 5882, p. 58820E. [Google Scholar]
- Vourlitis, G.L.; de Almeida Lobo, F.; Lawrence, S.; Codolo de Lucena, I.; Pinto, O.B.; Dalmagro, H.J.; Carmen, E.; Rodriguez, O.; de Souza Nogueira, J. Variations in stand structure and diversity along a soil fertility gradient in a Brazilian savanna (Cerrado) in southern Mato Grosso. Soil Sci. Soc. Am. J. 2013, 77, 1370–1379. [Google Scholar] [CrossRef] [Green Version]
- RADAMBRASIL. Levantamentos dos Recursos Naturais. In Secretaria Geral. Projeto RADAMBRASIL. Folha SD 21 Cuiabá; Ministério de Minas e Energia: Rio de Janeiro, Brazil, 1982; p. 448. [Google Scholar]
- Machado, N.G.; Biudes, M.S.; Angelini, L.P.; Mützenberg, D.M.; Nassarden, D.C.S.; Bilio, R.; da Silva, T.J.A.; Neves, G.A.R.; de Arruda, P.H.Z.; Nogueira, J.S. Sazonalidade do balanço de energia e evapotranspiração em área arbustiva alagável no pantanal mato-grossense. Rev. Bras. Meteorol. 2016, 31, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Machado, N.G.; Biudes, M.S.; Querino, C.A.S.; Danelichen, V.H.; Velasque, M.C.S. Seasonal and interannual pattern of meteorological variables in Cuiabá, Mato Grosso State, Brazil. Rev. Bras. Geofis. 2015, 33, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Schmidt, G.; Jenkerson, C.; Masek, J.; Vermote, E.; Gao, F. Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description; U.S. Geological Survey: Reston, VA, USA, 2013.
- Vermote, E.F.; Tanré, D.; Luc Deuzé, J.; Herman, M.; Morcrette, J.-J. Second simulation of the satellite signal in the solar spectrum, 6s: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Vermote, E.F.; Franch, B.; Masek, J.G. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sens. Environ. 2015, 169, 390–403. [Google Scholar] [CrossRef]
- Vermote, E.F.; Kotchenova, S.Y.; Ray, J.P. MODIS Surface Reflectance User’s Guide. 2011. Available online: http://modis-sr.ltdri.org (accessed on 10 August 2021).
- Zhong, Q.; Yinhai, L. Satellite observation of surface albedo over the Qinghai-Xizang Plateau region. Adv. Atmos. Sci. 1988, 5, 57–65. [Google Scholar] [CrossRef]
- Da Silva, B.B.; Braga, A.C.; Braga, C.C.; de Oliveira, L.M.M.; Montenegro, S.M.G.L.; Barbosa Junior, B. Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid. Rev. Bras. Eng. Agric. Ambient. 2016, 20, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Mattar, C.; Franch, B. Atmospheric Correction of optical imagery from MODIS and reanalysis atmospheric products. Remote Sens. Environ. 2010, 114, 2195–2210. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS-comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Skokovic, D.; Sobrino, J.a.; Jiménez Muñoz, J.C.; Soria, G.; Julien, Y.; Mattar, C.; Cristóbal, J. Calibration and validation of land surface temperature for Landsat8- TIRS sensor tirs LANDSAT-8 Characteristics. In Proceedings of the Land Product Validation and Evolution Workshop (LPVE), ESA/ESRIN, Frascati, Italy, 28–30 January 2014; p. 27. [Google Scholar]
- Liu, L.; Zhang, Y. Urban heat island analysis using the Landsat TM Data and ASTER data: A case study in Hong Kong. Remote Sens. 2011, 3, 1535–1552. [Google Scholar] [CrossRef] [Green Version]
- Eros, U. Landsat Collection 1 Level 1 Product Definition; USGS: Reston, WV, USA, 2017.
- Johnson, R.W. An Introduction to the Bootstrap; Chapman & Hall: New York, NY, USA, 2001; Volume 23. [Google Scholar]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Mira, M.; Weiss, M.; Baret, F.; Courault, D.; Hagolle, O.; Gallego-Elvira, B.; Olioso, A. The MODIS (Collection V006) BRDF/Albedo product MCD43D: Temporal course evaluated over agricultural landscape. Remote Sens. Environ. 2015, 170, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Houspanossian, J.; Giménez, R.; Jobbágy, E.; Nosetto, M. Surface albedo raise in the South American Chaco: Combined effects of deforestation and agricultural changes. Agric. Forest Meteorol. 2017, 232, 118–127. [Google Scholar] [CrossRef] [Green Version]
- Trlica, A.; Hutyra, L.R.; Schaaf, C.L.; Erb, A.; Wang, J.A. Albedo, land cover, and daytime surface temperature variation across an urbanized landscape. Earth’s Future 2017, 5, 1084–1101. [Google Scholar] [CrossRef] [Green Version]
- Fausto, M.A.; Machado, N.G.; de Souza Nogueira, J.; Biudes, M.S. Net radiation estimated by remote sensing in Cerrado areas in the Upper Paraguay River Basin. J. Appl. Remote Sens. 2014, 8, 083541. [Google Scholar] [CrossRef]
- Prata, A.J.; Casellescoll, C.V.; Sobrino, J.A.; Ottle, C. Thermal remote sensing of land surface temperature from satellites: Current status and future prospects. Remote Sens. Rev. 1995, 12, 175–224. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Ma, T.; Kejia, D.; Zhou, Q.; Yao, B.; Niu, T. Retrieval of the surface evapotranspiration patterns in the Alpine Grassland-Wetland ecosystem applying SEBAL model in the source region of the Yellow River, China. Ecol. Model. 2013, 270, 64–75. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Caselles, V.; Coll, C.; Valor, E. Land surface emissivity and temperature determination in the whole HAPEX-Sahel Area from AVHRR data. Int. J. Remote Sens. 1997, 18, 1009–1027. [Google Scholar] [CrossRef]
- Schädlich, S.; Göttsche, F.M.; Olesen, F.S. Influence of land surface parameters and atmosphere on METEOSAT brightness temperatures and generation of land surface temperature maps by temporally and spatially interpolating atmospheric correction. Remote Sens. Environ. 2001, 75, 39–46. [Google Scholar] [CrossRef]
- Coll, C.; Galve, J.M.; Sánchez, J.M.; Caselles, V. Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Trans. Geosci. Remote Sens. 2010, 48, 547–555. [Google Scholar] [CrossRef]
- Coll, C.; Caselles, V.; Valor, E.; Niclòs, R. Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data. Remote Sens. Environ. 2012, 117, 199–210. [Google Scholar] [CrossRef]
- Pérez-Planells, L.; García-Santos, V.; Caselles, V. Comparing different profiles to characterize the atmosphere for three MODIS TIR bands. Atmos. Res. 2015, 161–162, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Malakar, N.K.; Hulley, G.C.; Hook, S.J.; Laraby, K.; Cook, M.; Schott, J.R. An operational land surface temperature product for landsat thermal data: Methodology and validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5717–5735. [Google Scholar] [CrossRef]
- Windahl, E.; de Beurs, K. An intercomparison of landsat land surface temperature retrieval methods under variable atmospheric conditions using in situ skin temperature. Int. J. Appl. Earth Obs. Geoinf. 2016, 51, 11–27. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A single-channel algorithm for land-surface temperature retrieval from ASTER data. IEEE Geosci. Remote Sens. Lett. 2010, 7, 176–179. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. Split-window coefficients for land surface temperature retrieval from low-resolution thermal infrared sensors. IEEE Geosci. Remote Sens. Lett. 2008, 5, 806–809. [Google Scholar] [CrossRef]
- Hook, S.J.; Chander, G.; Barsi, J.A.; Alley, R.E.; Abtahi, A.; Palluconi, F.D.; Markham, B.L.; Richards, R.C.; Schladow, S.G.; Helder, D.L. In-flight validation and recovery of water surface temperature with Landsat-5 thermal infrared data using an automated high-altitude lake validation site at Lake Tahoe. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2767–2776. [Google Scholar] [CrossRef]
- Kenny, D.A.; McCoach, D.B. Effect of the number of variables on measures of fit in structural equation modeling. Struct. Equ. Modeling 2003, 10, 333–351. [Google Scholar] [CrossRef]
- Wang, D.; Liang, S.; He, T.; Shi, Q. Estimation of daily surface shortwave net radiation from the combined MODIS data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5519–5529. [Google Scholar] [CrossRef]
- Mira, M.; Olioso, A.; Gallego-Elvira, B.; Courault, D.; Garrigues, S.; Marloie, O.; Hagolle, O.; Guillevic, P.; Boulet, G. Uncertainty assessment of surface net radiation derived from landsat images. Remote Sens. Environ. 2016, 175, 251–270. [Google Scholar] [CrossRef] [Green Version]
- Marques, H.O.; Biudes, M.S.; Pavão, V.M.; Machado, N.G.; Querino, C.A.S.; de Morais Danelichen, V.H. Estimated net radiation in an amazon–cerrado transition forest by Landsat 5 TM. J. Appl. Remote Sens. 2017, 11, 1. [Google Scholar] [CrossRef]
- De Oliveira, G.; Brunsell, N.A.; Moraes, E.C.; Bertani, G.; dos Santos, T.V.; Shimabukuro, Y.E.; Aragão, L.E.O.C. Use of MODIS sensor images combined with reanalysis products to retrieve net radiation in amazonia. Sensors 2016, 16, 956. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.H.; Bastiaanssen, W.G.M.; Ahmad, M.D.; Bos, M.G. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the low-middle São Francisco River basin, Brazil. Part B: Application to the regional scale. Agric. Forest Meteorol. 2009, 149, 477–490. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Su, Z.; Li, Z.; Koike, T.; Menenti, M. Determination of regional net radiation and soil heat flux over a heterogeneous landscape of the Tibetan Plateau. Hydrol. Process. 2002, 16, 2963–2971. [Google Scholar] [CrossRef]
- Alados, I.; Foyo-Moreno, I.; Olmo, F.J.; Alados-Arboledas, L. Relationship between net radiation and solar radiation for semi-arid shrub-land. Agric. Forest Meteorol. 2003, 116, 221–227. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.F.; Claverie, M. Intercomparison of landsat albedo retrieval techniques and evaluation against in situ measurements across the US SURFRAD network. Remote Sens. Environ. 2014, 152, 627–637. [Google Scholar] [CrossRef]
- Paul, G.; Gowda, P.H.; Vara Prasad, P.V.; Howell, T.A.; Aiken, R.M.; Neale, C.M.U. Investigating the influence of roughness length for heat transport (Zoh) on the performance of SEBAL in semi-arid irrigated and dryland agricultural systems. J. Hydrol. 2014, 509, 231–244. [Google Scholar] [CrossRef]
- Purdy, A.J.; Fisher, J.B.; Goulden, M.L.; Famigliett, J.S. Ground heat flux: An analytical review of 6 models evaluated at 88 sites and globally. J. Geophys. Res. Biogeosci. 2016, 121, 3045–3059. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P. A Modified surface energy balance algorithm for land (M-SEBAL) based on a trapezoidal framework. Water Resour. Res. 2012, 48, W02528. [Google Scholar] [CrossRef]
- De Andrade, B.C.C.; Pedrollo, O.C.; Ruhoff, A.; Moreira, A.A.; Laipelt, L.; Kayser, R.B.; Biudes, M.S.; dos Santos, C.A.C.; Roberti, D.R.; Machado, N.G.; et al. Artificial neural network model of soil heat flux over multiple land covers in South America. Remote Sens. 2021, 13, 2337. [Google Scholar] [CrossRef]
- Timmermans, W.J.; Kustas, W.P.; Anderson, M.C.; French, A.N. An intercomparison of the surface energy balance algorithm for land (SEBAL) and the two-source energy balance (TSEB) modeling schemes. Remote Sens. Environ. 2007, 108, 369–384. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P.; Li, Z.L. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.L.; Jia, Y.; Li, C.; Sun, X.; Kustas, W.P.; Anderson, M.C. An intercomparison of three remote sensing-based energy balance models using large aperture scintillometer measurements over a wheat-corn production region. Remote Sens. Environ. 2011, 115, 3187–3202. [Google Scholar] [CrossRef]
- Khand, K.; Numata, I.; Kjaersgaard, J.; Vourlitis, G.L. Dry season evapotranspiration dynamics over human-impacted landscapes in the Southern Amazon using the landsat-based METRIC model. Remote Sens. 2017, 9, 706. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, B.G.; da Silva, B.B.; dos Santos, C.A.C.; Bezerra, J.R.C. Actual Evapotranspiration estimation using remote sensing: Comparison of SEBAL and SSEB approaches. Adv. Remote Sens. 2015, 4, 234–247. [Google Scholar] [CrossRef] [Green Version]
- Bala, A.; Pawar, P.S.; Misra, A.K.; Rawat, K.S. Estimation and validation of actual evapotranspiration for wheat crop using SEBAL model over Hisar District, Haryana, India. Curr. Sci. 2017, 113, 134–141. [Google Scholar] [CrossRef]
Variable | Equipment Description | Installation Height from the Ground (m) | |
---|---|---|---|
FMI | BPE | ||
Rgi/Rgr | LI200X, LI-COR, Lincoln, NE, USA | 5 | 20 |
Rn | NRLITE, Kipp & Zonen, Delft, The Netherlands | 5 | 20 |
G | HFP01, Hukseflux BV, Delft, The Netherlands | −0.05 | −0.05 |
Ta/RH | HMP-45AC, Vaisala Inc., Woburn, USA | 5–18 | 22–31 |
u | 014A, Met One, Grants Pass, USA | 5 | 22 |
Datalogger | CR1000, Campbell Scientific, Inc., Logan, USA |
Evaluation Sites | ||||
---|---|---|---|---|
Source | Source | |||
USGS, [53] | FMI (Mixed woodland–grassland) and BPE (Seasonal flooded large shrubs) | |||
Barsi et al. [29] | ||||
Silva et al. [48] | Jimenez-Munoz et al. [34] | |||
Jimenez-Munoz et al. [51] | ||||
Jimenez-Munoz et al. [34] | ||||
USGS, [53] | FMI (Mixed woodland–grassland) and BPE (Seasonal flooded large shrubs) | |||
Barsi et al. [29] | ||||
This study | Jimenez-Munoz et al. [34] | |||
Jimenez-Munoz et al. [51] | ||||
Jimenez-Munoz et al. [34] |
Models | Average ± IC | MAE | MAPE | RMSE | d | r |
---|---|---|---|---|---|---|
* | 0.159 ± 0.005 | |||||
0.155 ± 0.004 | 0.011 | 7.12 | 0.014 | 0.89 | 0.79 *** | |
0.232 ± 0.009 | 0.072 | 46.12 | 0.079 | 0.40 | 0.64 *** |
Models | Average ± IC Surface Albedo Values over Different Land Use Types | |||
---|---|---|---|---|
Agriculture | Urban Area | Forest | Water Bodies | |
0.179 ± 0.004 | 0.168 ± 0.004 | 0.125 ± 0.001 | 0.08 ± 0.003 | |
0.173 ± 0.003 | 0.162 ± 0.006 | 0.130 ± 0.002 | 0.07 ± 0.002 | |
0.244 ± 0.007 | 0.275 ± 0.030 | 0.178 ± 0.003 | 0.18 ± 0.004 |
Models | Average ± IC | MAE | MAPE | RMSE | d | r |
---|---|---|---|---|---|---|
K | K | % | K | |||
* | 306.3 ± 1.45 | |||||
300.5 ± 1.1 | 5.76 | 1.87 | 6.27 | 0.63 | 0.83 *** | |
307.5 ± 1.5 | 1.06 | 0.34 | 1.28 | 0.98 | 0.98 *** | |
307.1 ± 1.5 | 0.78 | 0.25 | 0.95 | 0.98 | 0.99 *** | |
307.2 ± 1.75 | 1.89 | 0.61 | 2.78 | 0.91 | 0.86 *** |
Average ± IC | MAE | MAPE | RMSE | d | r | ||
---|---|---|---|---|---|---|---|
W m−2 | W m−2 | % | W m−2 | ||||
510.1 ± 30.0 | |||||||
Model Combination | |||||||
475.6 ± 22.0 | 33.41 | 6.24 | 43.64 | 0.92 | 0.94 *** | ||
428.3 ± 22.0 | 66.00 | 12.66 | 77.98 | 0.79 | 0.88 *** | ||
432.1 ± 23.0 | 72.59 | 13.94 | 85.60 | 0.76 | 0.85 *** | ||
434.2 ± 23.0 | 70.83 | 13.60 | 83.54 | 0.77 | 0.86 *** | ||
432.4 ± 23.0 | 72.63 | 13.90 | 86.14 | 0.75 | 0.83 *** | ||
521.4 ± 23.0 | 24.43 | 5.30 | 29.79 | 0.96 | 0.97 *** | ||
484.7 ± 23.0 | 30.04 | 5.53 | 40.19 | 0.93 | 0.94 *** | ||
477.6 ± 23.0 | 35.12 | 6.44 | 46.76 | 0.90 | 0.93 *** | ||
478.9 ± 22.0 | 33.65 | 6.16 | 44.94 | 0.91 | 0.93 *** | ||
479.0 ± 22.0 | 36.965 | 6.82 | 49.05 | 0.89 | 0.90 *** |
Average ± IC | MAE | MAPE | RMSE | d | |||
---|---|---|---|---|---|---|---|
W m−2 | W m−2 | % | W m−2 | ||||
47.2 ± 6.2 | |||||||
Model Combination | |||||||
63.8 ± 4.4 | 18.22 | 56.76 | 21.54 | 0.59 | 0.57 ** | ||
71.3 ± 5.3 | 24.18 | 73.35 | 27.89 | 0.54 | 0.58 ** | ||
72.1 ± 5.2 | 25.87 | 75.85 | 28.86 | 0.53 | 0.57 ** | ||
71.7 ± 5.0 | 25.60 | 75.26 | 28.63 | 0.53 | 0.57 ** | ||
72.1 ± 5.1 | 25.46 | 74.85 | 28.60 | 0.53 | 0.57 ** | ||
63.6 ± 4.5 | 18.26 | 56.65 | 21.47 | 0.53 | 0.55 ** | ||
72.0 ± 5.2 | 24.79 | 74.64 | 28.41 | 0.54 | 0.57 ** | ||
72.8 ± 5.1 | 25.87 | 77.58 | 29.54 | 0.53 | 0.55 ** | ||
73.0 ± 5.5 | 25.60 | 76.88 | 29.25 | 0.53 | 0.55 ** | ||
72.6 ± 5.3 | 25.46 | 76.43 | 29.29 | 0.53 | 0.58 ** |
Average ± IC | MAE | MAPE | RMSE | d | r | ||
---|---|---|---|---|---|---|---|
W m−2 | W m−2 | % | W m−2 | ||||
201.7 ± 23.0 | |||||||
Model Combination | |||||||
167.0 ± 18.3 | 30.27 | 15.37 | 36.50 | 0.84 | 0.87 *** | ||
148.3 ± 17.0 | 45.20 | 22.46 | 51.94 | 0.72 | 0.86 *** | ||
140.0 ± 17.5 | 53.00 | 26.10 | 60.73 | 0.65 | 0.81 *** | ||
141.8 ± 17.0 | 51.00 | 25.47 | 58.56 | 0.66 | 0.82 *** | ||
131.0 ± 23.5 | 64.13 | 32.28 | 74.49 | 0.61 | 0.69 *** | ||
211.2 ± 23.0 | 28.17 | 15.06 | 31.39 | 0.91 | 0.84 *** | ||
188.5 ± 21.0 | 23.66 | 12.52 | 30.58 | 0.90 | 0.85 *** | ||
183.1 ± 21.0 | 28.38 | 14.57 | 36.76 | 0.86 | 0.81 *** | ||
186.3 ± 20.0 | 27.14 | 14.02 | 35.46 | 0.87 | 0.81 *** | ||
170.9 ± 22.0 | 36.83 | 18.8 | 47.00 | 0.80 | 0.78 *** |
Average ± IC | MAE | MAPE | RMSE | d | r | ||
---|---|---|---|---|---|---|---|
W m−2 | W m−2 | % | W m−2 | ||||
259.5 ± 46.0 | |||||||
Models Combination | |||||||
266.4 ± 41.0 | 29.42 | 11.59 | 37.93 | 0.95 | 0.93 *** | ||
247.1 ± 41.0 | 37.33 | 13.70 | 47.45 | 0.93 | 0.91 *** | ||
248.7 ± 42.0 | 40.79 | 15.08 | 51.01 | 0.92 | 0.89 *** | ||
250.2 ± 42.0 | 41.39 | 15.23 | 51.80 | 0.92 | 0.88 *** | ||
259.0 ± 44.0 | 41.28 | 14.75 | 52.58 | 0.92 | 0.86 *** | ||
276.6 ± 45.0 | 29.87 | 12.87 | 35.71 | 0.96 | 0.95 *** | ||
260.3 ± 43.0 | 27.59 | 11.70 | 33.83 | 0.97 | 0.94 *** | ||
257.2 ± 43.0 | 30.04 | 12.76 | 37.97 | 0.96 | 0.93 *** | ||
257.7 ± 41.0 | 30.51 | 12.87 | 38.71 | 0.96 | 0.92 *** | ||
270.6 ± 46.0 | 37.26 | 14.85 | 46.64 | 0.94 | 0.90 *** |
Average ± IC | MAE | MAPE | RMSE | d | r | ||
---|---|---|---|---|---|---|---|
W m−2 | W m−2 | % | W m−2 | ||||
3.00 ± 0.50 | |||||||
Model Combination | |||||||
2.69 ± 0.38 | 0.42 | 13.07 | 0.50 | 0.92 | 0.95 *** | ||
2.72 ± 0.40 | 0.39 | 12.45 | 0.46 | 0.94 | 0.95 *** | ||
2.79 ± 0.42 | 0.38 | 12.23 | 0.43 | 0.94 | 0.94 *** | ||
2.76 ± 0.39 | 0.39 | 12.48 | 0.45 | 0.94 | 0.94 *** | ||
3.12 ± 0.49 | 0.35 | 13.23 | 0.44 | 0.95 | 0.92 *** | ||
2.90 ± 0.39 | 0.32 | 11.36 | 0.37 | 0.96 | 0.95 *** | ||
2.95 ± 0.43 | 0.29 | 10.98 | 0.35 | 0.96 | 0.95 *** | ||
3.05 ± 0.44 | 0.28 | 11.14 | 0.35 | 0.96 | 0.94 *** | ||
3.00 ± 0.42 | 0.30 | 12.42 | 0.35 | 0.96 | 0.94 *** | ||
3.18 ± 0.47 | 0.35 | 13.23 | 0.44 | 0.95 | 0.92 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelini, L.P.; Biudes, M.S.; Machado, N.G.; Geli, H.M.E.; Vourlitis, G.L.; Ruhoff, A.; Nogueira, J.d.S. Surface Albedo and Temperature Models for Surface Energy Balance Fluxes and Evapotranspiration Using SEBAL and Landsat 8 over Cerrado-Pantanal, Brazil. Sensors 2021, 21, 7196. https://doi.org/10.3390/s21217196
Angelini LP, Biudes MS, Machado NG, Geli HME, Vourlitis GL, Ruhoff A, Nogueira JdS. Surface Albedo and Temperature Models for Surface Energy Balance Fluxes and Evapotranspiration Using SEBAL and Landsat 8 over Cerrado-Pantanal, Brazil. Sensors. 2021; 21(21):7196. https://doi.org/10.3390/s21217196
Chicago/Turabian StyleAngelini, Lucas Peres, Marcelo Sacardi Biudes, Nadja Gomes Machado, Hatim M. E. Geli, George Louis Vourlitis, Anderson Ruhoff, and José de Souza Nogueira. 2021. "Surface Albedo and Temperature Models for Surface Energy Balance Fluxes and Evapotranspiration Using SEBAL and Landsat 8 over Cerrado-Pantanal, Brazil" Sensors 21, no. 21: 7196. https://doi.org/10.3390/s21217196
APA StyleAngelini, L. P., Biudes, M. S., Machado, N. G., Geli, H. M. E., Vourlitis, G. L., Ruhoff, A., & Nogueira, J. d. S. (2021). Surface Albedo and Temperature Models for Surface Energy Balance Fluxes and Evapotranspiration Using SEBAL and Landsat 8 over Cerrado-Pantanal, Brazil. Sensors, 21(21), 7196. https://doi.org/10.3390/s21217196