Bulk Processing of Multi-Temporal Modis Data, Statistical Analyses and Machine Learning Algorithms to Understand Climate Variables in the Indian Himalayan Region
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. MODIS Grids
3.2. Elevation Grid
3.3. Meteorological Records
3.4. Climate Data
4. Methods
4.1. MODIS Data
4.2. Observation of Trends
4.3. Correlation Analyses
4.4. Lapse Rate
4.5. Support Vector Regression
4.6. Long Short-Term Memory (LSTM) Regression Analysis
5. Results
5.1. Distribution of Snow Extent, Vegetation Area and Temperature
5.2. Trend Analysis
5.3. Correlation Analyses
5.4. MODIS LST and Station Data
5.4.1. Mukhem Station
5.4.2. Kausani Station
5.5. Lapse Rate Analysis
5.6. Support Vector Regression Analysis
5.7. LSTM Regression Analysis
5.8. Global Climate Data
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MODIS | moderate resolution imaging spectroradiometer |
LSTM | long short-term memory |
LST | land surface temperature |
NDVI | normalized difference vegetation index |
SRTM | shuttle radar topography mission |
CHELSA | climatologies at high resolution for the earth’s land surface areas |
MIROC-ES2L | model for interdisciplinary research on climate, earth system version 2 for long-term simulations |
HDF | hierarchical data format |
HTTPS | hyper text transfer protocol secure |
TIFF | tag image file format |
CSV | comma-separated values |
IBM SPSS | international business machines corporation’s statistical package for the social sciences |
References
- Asam, S.; Callegari, M.; Matiu, M.; Fiore, G.; De Gregorio, L.; Jacob, A.; Menzel, A.; Zebisch, M.; Notarnicola, C. Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the Alps-An Earth observation-based analysis. Remote Sens. 2018, 10, 1757. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Nan, H.; Huntingford, C.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Peng, S.; Ahlström, A.; Canadell, J.G.; Cong, N.; et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 2014, 5, 5018. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, S.H.; Liston, G.E.; Tamstorf, M.P.; Abermann, J.; Lund, M.; Schmidt, N.M. Quantifying snow controls on vegetation greenness. Ecosphere 2018, 9, e02309. [Google Scholar] [CrossRef]
- Thiebault, K.; Young, S. Snow cover change and its relationship with land surface temperature and vegetation in northeastern North America from 2000 to 2017. Int. J. Remote Sens. 2020, 41, 8453–8474. [Google Scholar] [CrossRef]
- Zhang, Y.; Sherstiukov, A.B.; Qian, B.; Kokelj, S.V.; Lantz, T.C. Impacts of snow on soil temperature observed across the circumpolar north. Environ. Res. Lett. 2018, 13, 044012. [Google Scholar] [CrossRef] [Green Version]
- Rogan, J.; Franklin, J.; Stow, D.; Miller, J.; Woodcock, C.; Roberts, D. Mapping land-cover modifications over large areas: A comparison of machine learning algorithms. Remote Sens. Environ. 2008, 112, 2272–2283. [Google Scholar] [CrossRef]
- Xu, Y.; Ho, H.C.; Wong, M.S.; Deng, C.; Shi, Y.; Chan, T.C.; Knudby, A. Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5. Environ. Pollut. 2018, 242, 1417–1426. [Google Scholar] [CrossRef]
- Mishra, N.B.; Chaudhuri, G. Spatio-temporal analysis of trends in seasonal vegetation productivity across Uttarakhand, Indian Himalayas, 2000–2014. Appl. Geogr. 2015, 56, 29–41. [Google Scholar] [CrossRef]
- Bharti, R.R.; Adhikari, B.S.; Rawat, G.S. Assessing vegetation changes in timberline ecotone of Nanda Devi National Park, Uttarakhand. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 472–479. [Google Scholar] [CrossRef]
- Rathore, B.P.; Singh, S.K.; Bahuguna, I.M.; Brahmbhatt, R.M.; Rajawat, A.S.; Thapliyal, A.; Panwar, A. Ajai Spatio-temporal variability of snow cover in Alaknanda, Bhagirathi and Yamuna sub-basins, Uttarakhand Himalaya. Curr. Sci. 2015, 108, 1375–1380. [Google Scholar]
- Jeganathan, C.; Dadhwal, V.K.; Gupta, K.; Raju, P.L.N. Comparison of MODIS vegetation continuous field—Based forest density maps with IRS-LISS III derived maps. J. Indian Soc. Remote Sens. 2009, 37, 539–549. [Google Scholar] [CrossRef]
- Chakraborty, A.; Sachdeva, K.; Joshi, P.K. Mapping long-term land use and land cover change in the central Himalayan region using a tree-based ensemble classification approach. Appl. Geogr. 2016, 74, 136–150. [Google Scholar] [CrossRef]
- Justice, C.O.; Vermote, E.; Townshend, J.R.G.; Defries, R.; Roy, D.P.; Hall, D.K.; Salomonson, V.V.; Privette, J.L.; Riggs, G.; Strahler, A.; et al. The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1228–1249. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Justice, C.; van Leewen, W. MODIS Vegetation Index (MOD 13) Algorithm Theoretical Basis Document; University of Arizona: Tucson, AZ, USA, 1999. [Google Scholar]
- Wan, Z.; Hook, S.; Hulley, G. NoMOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006. NASA EOSDIS Land Processes DAAC. USGS EROS Cent. 2015, 10. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Baeza, S.; Paruelo, J.M. Land use/land cover change (2000–2014) in the rio de la plata grasslands: An analysis based on MODIS NDVI time series. Remote Sens. 2020, 12, 381. [Google Scholar] [CrossRef] [Green Version]
- Aitekeyeva, N.; Li, X.; Guo, H.; Wu, W.; Shirazi, Z.; Ilyas, S.; Yegizbayeva, A.; Hategekimana, Y. Drought risk assessment in cultivated areas of central asia using MODIS time-series data. Water 2020, 12, 1738. [Google Scholar] [CrossRef]
- Huang, X.; Huang, J.; Wen, D.; Li, J. An updated MODIS global urban extent product (MGUP) from 2001 to 2018 based on an automated mapping approach. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102255. [Google Scholar] [CrossRef]
- Overpeck, J.T.; Meehl, G.A.; Bony, S.; Easterling, D.R. Climate data challenges in the 21st century. Science 2011, 331, 700–702. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Verma, R.S.; Rahman, L.U.; Chanotiya, C.S.; Verma, R.K.; Chauhan, A.; Yadav, A.; Singh, A.; Yadav, A.K. Esential oil composition of Lavandula angustifolia Mill. cultivated in the mid hills of Uttarakhand, India. J. Serb. Chem. Soc. 2010, 75, 343–348. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.O.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The randolph glacier inventory: A globally complete inventory of glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef] [Green Version]
- ESRI. ArcMap 10.3; ESRI: Redlands, CA, USA, 2016. [Google Scholar]
- Nasa, J.P.L. NASA Shuttle Radar Topography Mission Global 1 arc second number. Nasa Lp Daac 2013, 15. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Haq, M.A.; Baral, P.; Yaragal, S.; Rahaman, G. Assessment of trends of land surface vegetation distribution, snow cover and temperature over entire Himachal Pradesh using MODIS datasets. Nat. Resour. Model. 2020, 33, e12262. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Oxford University Press: London, UK, 1970; ISBN 0195208374. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Schumacker, R.; Tomek, S. z-Test. In Understanding Statistics Using R; Springer: New York, NY, USA, 2013. [Google Scholar]
- Adinsoft, S. XLSTAT-Software, Version 10; Addinsoft: Paris, France, 2010. [Google Scholar] [CrossRef]
- IBM. IBM Analytics IBM SPSS Software; IBM: Armonk, NY, USA, 2016. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 1995; Volume 8, p. 1564. [Google Scholar] [CrossRef] [Green Version]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chollet, F. Keras Documentation; GitHub: San Francisco, CA, USA, 2015; Available online: https://github.com/fchollet/keras (accessed on 5 September 2021).
- Abadi, M.; Agarwal, A.; Paul Barham, E.B.; Chen, Z.; Citro, C.; Greg, S.; Corrado, A.D.; Dean, J.; Devin, M.; Ghemawat, S.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv Prepr. 2015, arXiv:1603.04467. [Google Scholar]
- Hu, C.; Wu, Q.; Li, H.; Jian, S.; Li, N.; Lou, Z. Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water 2018, 10, 1543. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Shen, C. Near-real-time forecast of satellite-based soil moisture using long short-term memory with an adaptive data integration kernel. J. Hydrometeorol. 2020, 21, 399–413. [Google Scholar] [CrossRef]
- Negi, H.S.; Kanda, N.; Shekhar, M.S.; Ganju, A. Recent wintertime climatic variability over the North West Himalayan cryosphere. Curr. Sci. 2018, 114, 760–770. [Google Scholar] [CrossRef]
- IIRS. A Preliminary Assessment Report on Assessment of Long-Term and Current Status (2016–2017) of Snow Cover Area in North. Western Himalayan River Basins Using Remote Sensing; Indian Institute of Remote Sensing ISRO: Dehradun, India, 2017. [Google Scholar]
- Chakraborty, A.; Seshasai, M.V.R.; Reddy, C.S.; Dadhwal, V.K. Persistent negative changes in seasonal greenness over different forest types of India using MODIS time series NDVI data (2001–2014). Ecol. Indic. 2018, 85, 887–903. [Google Scholar] [CrossRef]
Remote Sensing Data | |||
Grids | Grid Cell Size | Temporal Resolution | |
MOD10A2 | 500 m | 8 days | |
MOD11A2 | 1000 m | 8 days | |
MOD13A1 | 500 m | 16 days | |
SRTMGL1 V003 | 30 m | NA | |
WorldClim 2.0 (BIO1, BIO10, BIO12 and BIO16) | 1000 m | NA | |
CHELSA (BIO1, BIO10, BIO12 and BIO16) | 1000 m | NA | |
MIROC-ES2L (BIO1, BIO10, BIO12 and BIO16) | 1000 m | NA | |
Meteorological Records | |||
Station | Duration | Type | |
Mukhem | 2001–2008 | Average value of maximum temperature for each month | |
Kausani | 2001–2009 | Average value of maximum temperature for each month |
Elevation Range (m a.s.l.) | MinM-MinC | MaxM-MaxC | MeanM-MeanC | MinM-MinW | MaxM-MaxW | MeanM-MeanW | MinM-MinMi | MaxM-MaxMi | MeanM-MeanMi |
---|---|---|---|---|---|---|---|---|---|
<2000 | −14 | 9 | 5 | −16 | 9 | 3 | −25 | 8 | 3 |
2000–2500 | −23 | 15 | 8 | −26 | 11 | 4 | −26 | 9 | 3 |
2500–3000 | −23 | 13 | 8 | −24 | 9 | 4 | −24 | 7 | 3 |
3000–3500 | −19 | 12 | 7 | −19 | 8 | 5 | −19 | 6 | 4 |
3500–4000 | −21 | 13 | 7 | −19 | 8 | 6 | −21 | 7 | 4 |
4000–4500 | −17 | 14 | 7 | −13 | 10 | 7 | −17 | 9 | 5 |
4500–5000 | −14 | 15 | 7 | −9 | 11 | 9 | −12 | 8 | 4 |
5000–5500 | −15 | 16 | 7 | −9 | 14 | 9 | −16 | 10 | 4 |
5500–6000 | −21 | 14 | 5 | −15 | 14 | 8 | −21 | 10 | 2 |
>6000 | −23 | 11 | 3 | −14 | 12 | 7 | −27 | 6 | −1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haq, M.A.; Baral, P.; Yaragal, S.; Pradhan, B. Bulk Processing of Multi-Temporal Modis Data, Statistical Analyses and Machine Learning Algorithms to Understand Climate Variables in the Indian Himalayan Region. Sensors 2021, 21, 7416. https://doi.org/10.3390/s21217416
Haq MA, Baral P, Yaragal S, Pradhan B. Bulk Processing of Multi-Temporal Modis Data, Statistical Analyses and Machine Learning Algorithms to Understand Climate Variables in the Indian Himalayan Region. Sensors. 2021; 21(21):7416. https://doi.org/10.3390/s21217416
Chicago/Turabian StyleHaq, Mohd Anul, Prashant Baral, Shivaprakash Yaragal, and Biswajeet Pradhan. 2021. "Bulk Processing of Multi-Temporal Modis Data, Statistical Analyses and Machine Learning Algorithms to Understand Climate Variables in the Indian Himalayan Region" Sensors 21, no. 21: 7416. https://doi.org/10.3390/s21217416
APA StyleHaq, M. A., Baral, P., Yaragal, S., & Pradhan, B. (2021). Bulk Processing of Multi-Temporal Modis Data, Statistical Analyses and Machine Learning Algorithms to Understand Climate Variables in the Indian Himalayan Region. Sensors, 21(21), 7416. https://doi.org/10.3390/s21217416