Layer-Resolving Terahertz Light-Field Imaging Based on Angular Intensity Filtering Method
Abstract
:1. Introduction
2. Related Works
3. Theory and Methods
3.1. The BRDF Model and Reflection Properties of Surfaces
3.2. The Interaction between Terahertz Beam and Multilayer Materials
3.3. The Angular Intensity Filtering Method
4. Experiment and Results
4.1. Experiment Setup
4.2. The Feasibility Evaluation of AIF Method on Multilayer Resolving
4.3. Layer Separation and Reconstruction of Practical Multilayer Sample
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mittleman, M.D.; Jacobsen, R.H.; Nuss, M.C. T-ray imaging. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 679–692. [Google Scholar] [CrossRef] [Green Version]
- Mittleman, M.D.; Jacobsen, R.H.; Nuss, M.C. Twenty years of terahertz imaging. Opt. Express 2018, 26, 9417. [Google Scholar] [CrossRef] [PubMed]
- Guillet, J.-P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P. Review of Terahertz Tomography Techniques. J. Infrared Millim. Terahertz Waves 2014, 35, 382–411. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Xu, J.; Xie, X.; Yuan, T.; Reightler, R.; Madaras, E.; Zhang, X.-C. Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sens. J. 2005, 5, 203–208. [Google Scholar] [CrossRef]
- Tanabe, T.; Watanabe, K.; Oyama, Y.; Seo, K. Polarization sensitive THz absorption spectroscopy for the evaluation of uniaxially deformed ultra-high molecular weight polyethylene. NDT E Int. 2010, 43, 329–333. [Google Scholar] [CrossRef]
- Groves, R.M.; Pradarutti, B.; Kouloumpi, E.; Osten, W.; Notni, G. 2D and 3D non-destructive evaluation of a wooden panel painting using shearography and terahertz imaging. NDT E Int. 2009, 42, 543–549. [Google Scholar] [CrossRef]
- Jackson, J.; Mourou, M.; Whitaker, J.; Duling, I.; Williamson, S.; Menu, M.; Mourou, G. Terahertz imaging for non-destructive evaluation of mural paintings. Opt. Commun. 2008, 281, 527–532. [Google Scholar] [CrossRef]
- Caumes, J.P.; Younus, A.; Salort, S.; Chassagne, B. Terahertz tomographic imaging of XVIIIth Dynasty Egyptian sealed pottery. Appl. Opt. 2011, 50, 3604–3608. [Google Scholar] [CrossRef] [Green Version]
- Kapilevich, B.; Pinhasi, Y.; Arusi, R.; Anisimov, M.; Hardon, D.; Litvak, B.; Wool, Y. 330 GHz FMCW Image Sensor for Homeland Security Applications. J. Infrared Millim. Terahertz Waves 2010, 31, 1370–1381. [Google Scholar] [CrossRef]
- Marchese, L.E.; Terroux, M.; Dufour, D.; Bolduc, M.; Chevalier, C.; Genereux, F.; Jerominek, H.; Bergeron, A. Case study of concealed weapons detection at stand-off distances using a compact, large field-of-view THz camera. In Micro- and Nanotechnology Sensors, Systems, and Applications VI; SPIE: Baltimore, MD, USA, 2014. [Google Scholar]
- Kemp, M.C.; Taday, P.F.; Cole, B.E.; Cluff, J.A.; Fitzgerald, A.J.; Tribe, W.R. Security applications of terahertz technology. In Terahertz for Military and Security Applications; SPIE: Orlando, FL, USA, 2003; pp. 44–52. [Google Scholar]
- Stoik, C.; Bohn, M.; Blackshire, J. Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy. NDT E Int. 2010, 43, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Tu, W.; Zhong, S.; Shen, Y.; Incecik, A. Nondestructive testing of marine protective coatings using terahertz waves with stationary wavelet transform. Ocean Eng. 2016, 111, 582–592. [Google Scholar] [CrossRef] [Green Version]
- Tu, W.; Zhong, S.; Incecik, A.; Fu, X. Defect feature extraction of marine protective coatings by terahertz pulsed imaging. Ocean Eng. 2018, 155, 382–391. [Google Scholar] [CrossRef] [Green Version]
- Takayanagi, J.; Jinno, H.; Ichino, S.; Suizu, K.; Yamashita, M.; Ouchi, T.; Kasai, S.; Ohtake, H.; Uchida, H.; Nishizawa, N.; et al. High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser. Opt. Express 2009, 17, 7533–7539. [Google Scholar] [CrossRef]
- Marchese, L.; Bolduc, M.; Tremblay, B.; Doucet, M.; Oulachgar, H.; Noc, L.L.; Williamson, F.; Alain, C.; Jerominek, H.; Bergeron, A. A microbolometer-based THz imager. In Proceedings of the SPIE Orlando, Orlando, FL, USA, 5–9 April 2010; p. 7671. [Google Scholar]
- Dufour, D.; Marchese, L.; Terroux, M.; Oulachgar, H.; Généreux, F.; Doucet, M.; Mercier, L.; Tremblay, B.; Alain, C.; Beaupré, P.; et al. Review of terahertz technology development at INO. J. Infrared Millim. Terahertz Waves 2015, 36, 922–946. [Google Scholar] [CrossRef]
- Al Hadi, R.; Sherry, H.; Grzyb, J.; Zhao, Y.; Forster, W.; Keller, H.M.; Cathelin, A.; Kaiser, A.; Pfeiffer, U.R. A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS. IEEE J. Solid-State Circuits 2012, 47, 2999–3012. [Google Scholar] [CrossRef]
- Singh, S.P.; Jha, A.K.; Akhtar, M.J. A contactless thickness measurement of multilayer structure using terahertz time domain spectroscopy. In Proceedings of the 2015 IEEE Conference on Antenna Measurements & Applications (CAMA), Chiang Mai, Thailand, 30 November–2 December 2015; pp. 1–4. [Google Scholar]
- Krimi, S.; Klier, J.; Jonuscheit, J. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology. Appl. Phys. Lett. 2016, 109, 7518–7526. [Google Scholar] [CrossRef]
- Krimi, S.; Torosyan, G.; Beigang, R. Advanced GPU-Based Terahertz Approach for In-Line Multilayer Thickness Measurements. IEEE J. Sel. Top. Quantum Electron. 2016, 23, 1–12. [Google Scholar] [CrossRef]
- Van der Valk, N.C.J.; van der Marel, W.A.M.; Planken, P.C.M. Terahertz polarization imaging. Opt. Lett. 2005, 30, 2802–2804. [Google Scholar] [CrossRef] [Green Version]
- Doradla, P.; Alavi, K.; Joseph, C.S.; Giles, R.H. Detection of colon cancer by continuous-wave terahertz polarization imaging technique. J. Biomed. Opt. 2013, 18, 090504. [Google Scholar] [CrossRef]
- Ying, L.; Shen, Y.; Zhao, G. Terahertz polarization imaging based on the continuous wave terahertz radiations. In Proceedings of the Spie the International Society for Optical Engineering, Beijing, China, 17–19 May 2015. [Google Scholar]
- Levoy, M. Light Fields and Computational Imaging. Computer 2006, 39, 46–55. [Google Scholar] [CrossRef]
- Ng, R. Digital Light Field Photography. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2006. [Google Scholar]
- Georgiev, T.; Lumsdaine, A. Depth of Field in Plenoptic Cameras; Eurographics: Munich, Germany, 2009. [Google Scholar]
- Adelson, E.H.; Wang, J.Y.A. Single lens stereo with a plenoptic camera. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 2, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lv, H.; Liu, Y.; Wang, H.; Wang, X.; Huang, Q.; Xiang, X.; Dai, Q. Light-Field Depth Estimation via Epipolar Plane Image Analysis and Locally Linear Embedding. IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 739–747. [Google Scholar] [CrossRef]
- Lüke, J.P.; Marichal-Hernández, J.G.; Rosa, F.; Rodríguez-Ramos, J.M. A prototype of a real-time single lens 3D camera. In Proceedings of the 3DSA’10, Tokyo, Japan, 19–21 May 2010; pp. 19–106. [Google Scholar]
- Bishop, T.E.; Zanetti, S.; Favaro, P. Light field superresolution. In Proceedings of the Computational Photography (ICCP), 2009 IEEE International Conference on IEEE, San Francisco, CA, USA, 16–17 April 2009; pp. 1–9. [Google Scholar]
- Carles, G.; Downing, J.; Harvey, A.R. Super-resolution imaging using a camera array. Opt. Lett. 2014, 39, 1889–1892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiburn, B. High Performance Imaging Using Arrays of Inexpensive Cameras. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2004. [Google Scholar]
- Coelho, P.A.; Tapia, J.; Pérez, F.; Torres, S.N.; Saavedra, C. Infrared light field imaging system free of fixed-pattern noise. Sci. Rep. 2017, 7, 13040. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.; Grzyb, J.; Pfeiffer, U.R. Terahertz light-field imaging. IEEE Transa. Terahertz Sci. Technol. 2016, 6, 649–657. [Google Scholar] [CrossRef]
- Levoy, M.; Ng, R.; Adams, A.; Footer, M.; Horowitz, M. Light Field Microscopy; ACM SIGGRAPH 2006 Papers; ACM: New York, NY, USA, 2006; pp. 924–934. [Google Scholar]
- Lin, X.; Wu, J.; Zheng, G.; Dai, Q. Camera array based light field microscopy. Biomed. Opt. Express 2015, 6, 3179–3189. [Google Scholar] [CrossRef] [Green Version]
- Tao, M.W.; Hadap, S.; Malik, J.; Ramamoorthi, R. Depth from Combining Defocus and Correspondence Using Light-Field Cameras. In Proceedings of the 2013 IEEE International Conference on Computer Vision IEEE, Sydney, Australia, 3–6 December 2013. [Google Scholar]
- Lyu, N.; Zuo, J.; Zhao, Y.; Zhang, C. Terahertz Synthetic Aperture Imaging with a Light Field Imaging System. Electronics 2020, 9, 830. [Google Scholar] [CrossRef]
- Tao, M.W.; Su, J.; Wang, T.C.; Malik, J.; Ramamoorthi, R. Depth Estimation and Specular Removal for Glossy Surfaces Using Point and Line Consistency with Light-Field Cameras. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1155–1169. [Google Scholar] [CrossRef]
- Tao, M.W.; Wang, T.C.; Malik, J.; Ramamoorthi, R. Depth Estimation for Glossy Surfaces with Light-Field Cameras. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Horé, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 20th International Conference on Pattern Recognition, ICPR 2010, Istanbul, Turkey, 23–26 August 2010. [Google Scholar]
Methods and Results | SSIM Value |
---|---|
AIF method (Ours) | 0.6419 |
Conventional LFI | 0.3629 |
K-means clustering (Tao et al.) | 0.4204 |
Reference with Gaussian noise, σ = 0.001 | 0.6668 |
Methods and Results | SSIM Value |
---|---|
AIF method (Ours) | 0.9239 |
K-means clustering (Tao et al.) | 0.5945 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, N.; Zuo, J.; Zhao, Y.; Zhang, C. Layer-Resolving Terahertz Light-Field Imaging Based on Angular Intensity Filtering Method. Sensors 2021, 21, 7451. https://doi.org/10.3390/s21227451
Lyu N, Zuo J, Zhao Y, Zhang C. Layer-Resolving Terahertz Light-Field Imaging Based on Angular Intensity Filtering Method. Sensors. 2021; 21(22):7451. https://doi.org/10.3390/s21227451
Chicago/Turabian StyleLyu, Nanfang, Jian Zuo, Yuanmeng Zhao, and Cunlin Zhang. 2021. "Layer-Resolving Terahertz Light-Field Imaging Based on Angular Intensity Filtering Method" Sensors 21, no. 22: 7451. https://doi.org/10.3390/s21227451
APA StyleLyu, N., Zuo, J., Zhao, Y., & Zhang, C. (2021). Layer-Resolving Terahertz Light-Field Imaging Based on Angular Intensity Filtering Method. Sensors, 21(22), 7451. https://doi.org/10.3390/s21227451