At-Sensor Radiometric Correction of a Multispectral Camera (RedEdge) for sUAS Vegetation Mapping
Abstract
:1. Introduction
2. Study Sites, Sensors, and Experiments
2.1. Study Sites and Sensor/Panel Properties
2.2. Flight and On-Ground Experiments
3. Methodological Design
3.1. RedEdge-M Image Calibration
3.2. RedEdge-M Radiometric Correction
3.3. At-Sensor DLS Radiometric Correction
3.4. Data Analysis
4. Experimental Results
4.1. The CRP and DLS Radiometric Characteristics
4.2. At-Sensor RedEdge-M Radiometric Correction
4.3. Validation with Jaz Field Spectra
4.4. At-Sensor Corrected RedEdge-M Surface Reflectance
4.5. Corrected Orthoimages and Vegetation Indices
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Forest Service (USFS). Unmanned Aircraft System (UAS)—Forest Service Standards for UAS Operations. U.S. Department of Agriculture. 2020. Available online: https://www.fs.usda.gov/sites/default/files/2020-07/Forest%20Service%20Standards%20for%20UAS%20Operations%2007012020.pdf (accessed on 25 February 2021).
- Jensen, J.R. Drone Aerial Photography and Videography: Data Collection and Image Interpretation (E-Book). 2017. Available online: https://www.jensendroneaerialphotographyvideography.com/ (accessed on 25 February 2021).
- Wang, C.; Morgan, G.R.; Hodgson, M.E. SUAS for 3D tree surveying: Comparative experiments on a closed-canopy earthen dam. Forests 2021, 12, 659. [Google Scholar] [CrossRef]
- Dale, J.; Burnside, N.; Hill-Butler, C.; Berg, M.; Strong, C.; Burgess, H. The use of unmanned aerial vehicles to determine differences in vegetation cover: A tool for monitoring coastal wetland restoration schemes. Remote Sens. 2020, 12, 4022. [Google Scholar] [CrossRef]
- Morgan, G.R.; Wang, C.; Morris, J.T. RGB indices and canopy height modeling for mapping tidal marsh biomass from a small unmanned aerial system. Remote Sens. 2021, 13, 3406. [Google Scholar] [CrossRef]
- Michez, A.; Bauwens, S.; Brostaux, Y.; Hiel, M.-P.; Garré, S.; Lejeune, P.; Dumont, B. How far can consumer-grade UAV RGB imagery describe crop production? A 3d and multitemporal modeling approach applied to Zea mays. Remote Sens. 2018, 10, 1798. [Google Scholar] [CrossRef] [Green Version]
- Jing, R.; Gong, Z.; Zhao, W.; Pu, R.; Deng, L. Above-bottom biomass retrieval of aquatic plants with regression models and SfM data acquired by a UAV platform—A case study in Wild Duck Lake Wetland, Beijing, China. ISPRS J. Photogramm. Remote Sens. 2017, 134, 122–134. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Maimaitiyiming, M.; Hartling, S.; Peterson, K.T.; Maw, M.J.; Shakoor, N.; Mockler, T.; Fritschi, F.B. Vegetation index weighted canopy volume model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 27–41. [Google Scholar] [CrossRef]
- DroneDeploy. NDVI Cameras for Drones. 2020. Available online: https://support.dronedeploy.com/docs/ndvi-cameras-for-drones (accessed on 22 September 2021).
- De Castro, A.I.; Shi, Y.; Maja, J.M.; Peña, J.M. UAVs for vegetation monitoring: Overview and recent scientific contributions. Remote Sens. 2021, 13, 2139. [Google Scholar] [CrossRef]
- MicaSense. 14 Ways to Use Multispectral Imagery in AG. 2019. Available online: https://micasense.com/drones-in-ag/ (accessed on 28 June 2021).
- Hakala, T.; Markelin, L.; Honkavaara, E.; Scott, B.; Theocharous, T.; Nevalainen, O.; Näsi, R.; Suomalainen, J.; Viljanen, N.; Greenwell, C.; et al. Direct reflectance measurements from drones: Sensor absolute radiometric calibration and system tests for forest reflectance characterization. Sensors 2018, 18, 1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berni, J.; Zarco-Tejada, P.; Suárez, L.; González-Dugo, V.; Fereres, E. Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Int. Arch. Photogramm. Remote Sens. Spat. Inform. Sci. 2009, 38, 6. [Google Scholar]
- Bychkovskiy, V.; Megerian, S.; Estrin, D.; Potkonjak, M. A collaborative approach to in-place sensor calibration. In Proceedings of the Information Processing in Sensor Networks, Palo Alto, CA, USA, 22–23 April 2003; pp. 301–316. [Google Scholar]
- Mamaghani, B.; Salvaggio, C. Multispectral sensor claibration and characaterization for sUAS remote sensing. Sensors 2019, 19, 4453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, M.S.; Bryant, R.; Thome, K.; Ni, W.; Nouvellon, Y.; Gonzalez-Dugo, M.P.; Qi, J.; Clarke, T.R. A refined empirical line approach for reflectance factor retrieval from Landsat-5 TM and Landsat-7 ETM+. Remote Sens. Environ. 2001, 78, 71–82. [Google Scholar] [CrossRef]
- Del Pozo, S.; Rodríguez-Gonzálvez, P.; Hernández-López, D.; Felipe-García, B. Vicarious radiometric calibration of a multispectral camera on board an unmanned aerial system. Remote Sens. 2014, 6, 1918–1937. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, H.; Zhang, B.; Chen, Z.; Yang, M.; Zhang, Y. A method suitable for vicarious calibration of a UAV hyperspectral remote sensor. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3209–3223. [Google Scholar] [CrossRef]
- MicaSense. RedEdge Camera Radiometric Calibration Model. In MicaSense Knowledge Base. 2021. Available online: https://support.micasense.com/hc/en-us/articles/115000351194-RedEdge-Camera-Radiometric-Calibration-Model (accessed on 11 July 2021).
- Mamaghani, B.; Sasaki, G.; Connal, R.; Kha, K.; Knappen, J.; Hartzell, R.; Marcellus, E.; Bauch, T.; Raqueno, N.; Salvaggio, C. An initial exploration of vicarious and in-scene calibration techniques for small unmanned aircraft systems. arXiv 2018, arXiv:1804.09585. [Google Scholar]
- GitHub. MicaSense RedEdge and Altum Image Processing Tutorials. 2019. Available online: https://github.com/micasense/imageprocessing#readme (accessed on 15 July 2021).
- Boiarskii, B.; Hasegawa, H. Comparison of NDVI and NDRE indices to detect differences in vegetation and chlorophyll content. International Confernece on Applied Science, Technology and Engineering. J. Mech. Contin. Math. Sci. 2019, 4, 20–29. [Google Scholar]
- Cui, Z.; Kerekes, J. Potential of Red Edge spectral bands in future Landsat Satellites on agroecosystem canopy green leaf area index retrieval. Remote Sens. 2018, 10, 1458. [Google Scholar] [CrossRef] [Green Version]
- Delegido, J.; Verrelst, J.; Meza, C.M.; Rivera, J.P.; Alonso, L.; Moreno, J. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [Google Scholar] [CrossRef]
Band Name | Central Wavelength (nm) | Bandwidth (nm) | Spectral Range (nm) | CRP Reflectance * | MAPIR Reflectance * | |||
---|---|---|---|---|---|---|---|---|
Black | Dark Gray | Light Gray | White | |||||
Blue | 475 | 20 | 465–485 | 0.4893 | 0.0198 | 0.1880 | 0.2561 | 0.8269 |
Green | 560 | 20 | 550–570 | 0.4895 | 0.0196 | 0.1974 | 0.2666 | 0.8722 |
Red | 668 | 10 | 663–673 | 0.4899 | 0.0192 | 0.1935 | 0.2652 | 0.8772 |
Red Edge | 717 | 10 | 712–722 | 0.4901 | 0.0194 | 0.2151 | 0.2670 | 0.8762 |
NIR | 840 | 40 | 820–860 | 0.4905 | 0.0202 | 0.2334 | 0.2797 | 0.8668 |
Experiments | Date | Weather | Time and Sample Size ** | ||||
---|---|---|---|---|---|---|---|
On-ground | 23 May 2021 | Sunny | 11:00 a.m. | 11:15 a.m. | 11:24 a.m. | 11:42 a.m. | 11:55 a.m. |
14 | 5 | 7 | 3 | 6 | |||
On-ground | 30 May 2021 | Cloudy | 12:32 p.m. | 12:40 p.m. | 12:46 p.m. | 12:52 p.m. | 13:15 p.m. * |
7 | 10 | 8 | 14 | 15 | |||
Flight (marsh) | 30 August 2020 | Cloudy | Start Time | Sample size ** | |||
12:41 p.m. | 2 | ||||||
Flight (marsh) | Sunny/thin cloud | 12:55 p.m. | 2 | ||||
Flight (marsh) | Sunny/thin cloud | 2:38 p.m. | 1 | ||||
Flight (marsh) | Sunny/thin cloud | 3:36 p.m. | 2 | ||||
Flight (forest) | 26 August 2020 | Sunny/thin cloud | 12:20 p.m. | 2 | |||
Flight (forest) | 22 September 2020 | Sunny/thin cloud | 12:32 p.m. | 2 | |||
Flight (grass) | 27 September 20 | Cloudy | 1:56 p.m. | 2 | |||
Flight (grass) | 18 August 2020 | Cloudy | 2:18 p.m. | 2 | |||
Flight (grass) | 4 August 2020 | Sunny | 10:23 a.m | 2 |
Blue | Green | Red | Red Edge | NIR | |
---|---|---|---|---|---|
a | 1.0118 | 1.1290 | 1.0875 | 1.0674 | 1.2506 |
b | 0.0036 | 0.0073 | 0.0210 | 0.0015 | 0.0155 |
0.4893 | 0.4895 | 0.4899 | 0.4901 | 0.4905 | |
mission-specific |
MAPIR White Panel | RedEdge-M CRP Panel | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Calibrated (Jaz) | RedEdge-M Measurement (Raw) | RedEdge-M Measurement (Corrected) | Pre-Calibrated (RedEdge-M) | Jaz Measurement | |||||||
All-Weather | Sunny | Overcast | All-Weather | Sunny | Overcast | All-Weather | Sunny | Overcast | |||
Blue | 0.827 | 0.694/0.041 * | 0.723 | 0.652 | 0.705/0.041 * | 0.733 | 0.664 | 0.4893 | 0.494/0.067 * | 0.477 | 0.518 |
Green | 0.872 | 0.728/0.047 | 0.760 | 0.679 | 0.828/0.051 | 0.863 | 0.776 | 0.4895 | 0.505/0.063 | 0.493 | 0.522 |
Red | 0.877 | 0.722/0.051 | 0.758 | 0.667 | 0.807/0.047 | 0.838 | 0.761 | 0.4899 | 0.478/0.071 | 0.459 | 0.506 |
Red Edge | 0.876 | 0.713/0.055 | 0.753 | 0.655 | 0.763/0.058 | 0.805 | 0.701 | 0.4901 | 0.477/0.070 | 0.458 | 0.506 |
NIR | 0.867 | 0.707/0.051 | 0.744 | 0.652 | 0.757/0.054 | 0.796 | 0.399 | 0.4905 | 0.483/0.063 | 0.466 | 0.510 |
Site | Date | Weather | Blue | Green | Red | Red Edge | NIR |
---|---|---|---|---|---|---|---|
Marsh | 30 August 2020 | Sunny/thin cloud | 1.0141 | 1.1343 | 1.1041 | 1.0690 | 1.2732 |
Grass | 27 September 2020 | Cloudy | 1.0223 | 1.1541 | 1.1754 | 1.0755 | 1.3657 |
Forest | 22 September 2020 | Sunny | 1.0146 | 1.1354 | 1.1079 | 1.0690 | 1.2746 |
Reflectance | Blue | Green | Red | Red Edge | NIR | |
---|---|---|---|---|---|---|
Marsh | Min | 0.0098 | 0.0192 | 0.0159 | 0.0321 | 0.0616 |
Max | 0.1397 | 0.2104 | 0.2116 | 0.2551 | 0.4110 | |
Grass | Min | 0.0235 | 0.0647 | 0.0321 | 0.0899 | 0.1473 |
Max | 0.4423 | 0.6098 | 0.6440 | 0.6312 | 0.8356 | |
Forest | Min | 0.0009 | 0.0018 | 0.0004 | 0.0074 | 0.0587 |
Max | 0.0525 | 0.1200 | 0.0666 | 0.2636 | 0.6762 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C. At-Sensor Radiometric Correction of a Multispectral Camera (RedEdge) for sUAS Vegetation Mapping. Sensors 2021, 21, 8224. https://doi.org/10.3390/s21248224
Wang C. At-Sensor Radiometric Correction of a Multispectral Camera (RedEdge) for sUAS Vegetation Mapping. Sensors. 2021; 21(24):8224. https://doi.org/10.3390/s21248224
Chicago/Turabian StyleWang, Cuizhen. 2021. "At-Sensor Radiometric Correction of a Multispectral Camera (RedEdge) for sUAS Vegetation Mapping" Sensors 21, no. 24: 8224. https://doi.org/10.3390/s21248224
APA StyleWang, C. (2021). At-Sensor Radiometric Correction of a Multispectral Camera (RedEdge) for sUAS Vegetation Mapping. Sensors, 21(24), 8224. https://doi.org/10.3390/s21248224