Machine Learning-Based Epileptic Seizure Detection Methods Using Wavelet and EMD-Based Decomposition Techniques: A Review
Abstract
:1. Introduction
1.1. EEG Databases and EEG Recording Techniques
1.2. EEG Decomposition Methods
1.3. EEG Pre-Processing Techniques and EEG Artifacts/Data Cleaning
1.4. Feature Extraction Methods Used in This Review
1.4.1. Extraction Based on Energy
1.4.2. Extraction Fully Based on Statistics
1.4.3. Extraction Based on Distribution and Histogram
1.4.4. Extraction Based on Other Combination Techniques
1.5. Machine Learning Algorithms Used for Review
2. State of the Art: ML-Based Epileptic Seizure Detection
2.1. Wavelet-Based Decomposition Systems with Conventional Performance Metrics Parameters
2.2. EMD-Based Decomposition Systems with Conventional Performance Metrics Parameters
2.3. Wavelet-Based Detection Systems with Other Performance Metrics Parameters
2.4. Other Statistical and Segmentation-Based Detection Systems
3. Performance Analysis of ML-Based Epileptic Seizure Detection Methods
3.1. Performance Evaluation Criteria
- TP: true positive is the identified number of true seizure epochs segments by both algorithm and doctor.
- TN: true negative is the identified number of true non-seizure epochs segments by both algorithm and doctor.
- FN: false negative is the number of misclassified seizure epochs segments by algorithms, which are recognized as non-seizures, but are actually seizures.
- FP: false positive is the number of misclassified seizure epochs segments by algorithms, which are recognized as seizures, but are actually non-seizures.
3.2. Wavelet Decomposition Based Seizure Detection
3.3. Empirical Mode Decomposition-Based Seizure Detection
3.4. RF Classifier-Based Seizure Detection
3.5. SVM Classifier-Based Seizure Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Authors/Dataset Used | Year | Decomposition/Features Used | Classification | Result | Inclusion Criteria |
---|---|---|---|---|---|
Bhattacharyya A, Pachori R. [1] Dataset: CHB_MIT | 2017 |
|
|
| Included due to full result specification. |
Jacobs D., Hilton T., Del Campo M. et al. [5] Dataset: Toronto Western Hospital Epilepsy Monitoring Unit | 2018 |
|
|
| Included due to full result specification. |
Shivnarayan Patidar. and Trilochan Panigrahi [6] Dataset: University of Bonn Germany | 2017 |
|
|
| Included due to full result specification. |
Wang D, Ren D, Li K, et al. [8] Dataset: Xi’an Jiaotong University | 2018 |
|
|
| Included due to full result specification. |
Hashem Kalbkhani and Mahrokh G. Shayesteh [9] Public Bonn Epilepsy EEG Dataset | 2017 |
|
| Ictal (Set E)
| Included due to full result specification. |
MuhdKaleem, Aziz Guergachi and Sridhar Krishnan. [10] Dataset: CHB MIT | 2017 |
|
| Uses kNN and SVM
| Included due to full result specification. |
Mingyang Li, Wanzhong Chen and TaoZhang, [13] Public Bonn Epilepsy EEG Dataset | 2017 |
|
|
| Included due to full result specification. |
JianJia, Balaji Goparaju, JiangLing Song, et al. [11] Public Bonn Epilepsy EEG Dataset | 2017 |
|
| Sets S and (F, N)
| Included due to full result specification. |
Tao Zhang, Wanzhong Chen and Mingyang Li. [16] Public Bonn Epilepsy EEG Dataset | 2017 |
|
|
| Included due to very few papers using EMD-based extraction method, even though no full results. |
Ali Yener Mutlu [17] Public Bonn Epilepsy EEG Dataset | 2018 |
|
| Kernel function/statistical parameters/classification performance (min–max) SPC 95.00–96.50 RBF (= 0.4) ACC 97.33–97.66 SEN 96.00–98.00 SPC 97.5–98.00 | Included due to full result specification. |
Parvez M, Paul M [18] Dataset: Epilepsy Centre of the University Hospital of Freiburg, Germany | 2017 |
|
| High prediction accuracy (i.e., 95.4%) FPR = 0.36 Average early prediction time is 22.16 s | Excluded due to no parameter on sensitivity and specificity |
Sutrisno Ibrahim, Ridha Djemal and Abdullah Alsuwailem. [12] Dataset: Public Bonn Epilepsy EEG And CHB MIT | 2018 |
|
| Accuracy = 100% | Excluded due to no parameter on sensitivity and specificity |
Khan H, Marcuse L, Fields M, et al. [7] Dataset: The Mount Sinai Epilepsy Center And CHB MIT | 2018 |
|
| MSSM result Pre-ictal Length = 8 min FPr = 0.128/h CHB MIT result Pre-ictal Length = 6 min FPr = 0.147/h | Excluded due to no parameter on accuracy, sensitivity and specificity |
Shiao H, Cherkassky V, Lee J, et al. [19] Dataset: Mayo Clinic | 2017 |
|
| Sensitivity = ~ 90–100%, false-positive rate =~ 0–0.3 times per day. | Excluded due to no parameter on accuracy and specificity |
Nisrine Jrad, Kachenoura A, Merlet I et al., [15] Dataset: University Hospital of Rennes in France | 2016 |
|
|
| Excluded due to no parameter on accuracy |
MingyangLi, Wanzhong Chen and TaoZhang. [14] Dataset: Department of Epileptology, University of Bonn | 2017 |
|
|
| Excluded due to no parameter on sensitivity and specificity |
Abeg Kumar Jaiswal, Haider Banka. [20] Dataset:Public Bonn Epilepsy EEG | 2017 |
|
|
| Excluded due to no parameter on sensitivity and specificity |
Kostas M. Tsiouris, Sofia Markoula, Spiros Konitsiotis et al. [21] CHB MIT | 2018 |
|
| SSM4
| Excluded due to no parameter on accuracy and specificity |
HüseyinGöksu. [22] Public Bonn Epilepsy EEG Dataset | 2018 |
|
| Accuracy = 100% | Excluded due to no parameter on sensitivity and specificity |
Appendix B
Paper | Dataset Used | Patients | Recording | Sampling Frequency (Hz)/Resolution (Bit) | Characteristics |
---|---|---|---|---|---|
1, 7, 10, 12, 21 | CHB-MIT | 23 | 9 to 42 records for each patient. | 256 | Papers using this dataset have used all patient data except paper 7, which used only 22 patients’ data. Only paper 1 and 10 reported using 16-bit resolution in their sampling. |
6, 9, 11–14, 16–17, 20, 22 | Epilepsy Center of the Bonn University Hospital | 5 sets |
| 173.61 | 5 patient records are available labelled A, B, C, D, and E. However the studies used the following sets: 6,11,17—subset C, D, and E 9,16,20, and 22—used all sets 13 and 14—subset A, D, and E Study 12—subset A vs E Only paper 11 reported using 12-bit resolution in its sampling |
5 | Toronto Western Hospital Epilepsy Monitoring | 12 | All patient data were used in this paper; however, the sampling frequency is as below: 500 Hz (5 patients), 512 Hz(3 patients), 1000 Hz (3 patients) and 1024 Hz (1 patients) | ||
7 | Mount Sinai Epilepsy Center | 28 | 86 scalp EEG recordings. | 256 | Only one study used this dataset |
8 | Institutional Review Boards of Xi’an Jiaotong University | 10 | 200 samples/second | Only one study used this dataset | |
15 | Neurology Department of the University Hospital of Rennes | 5 | 2048 | Only one study used this dataset | |
19 | Mayo Clinic | 6 (dogs) | 400 | Only one study used this dataset |
Appendix C
References
- Bhattacharyya, A.; Pachori, R.B. A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transform. IEEE Trans. Biomed. Eng. 2017, 64, 2003–2015. [Google Scholar] [CrossRef]
- Zabihi, M.; Kiranyaz, S.; Rad, A.B.; Katsaggelos, A.K.; Gabbouj, M.; Ince, T. Analysis of High-Dimensional Phase Space via Poincaré Section for Patient-Specific Seizure Detection. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 386–398. [Google Scholar] [CrossRef]
- Osorio, I.; Frei, M.G.; Wilkinson, S.B. Real-Time Automated Detection and Quantitative Analysis of Seizures and Short-Term Prediction of Clinical Onset. Epilepsia 1998, 39, 615–627. [Google Scholar] [CrossRef]
- Amalmivuo, J.; Plonsey, R. Electroencephalography. In Bioelectromagnetism, illustrated ed.; Oxford University Press: Oxford, UK, 1995; pp. 365–374. [Google Scholar]
- Jacobs, D.; Hilton, T.; del Campo, M.; Carlen, P.L.; Bardakjian, B.L. Classification of Pre-Clinical Seizure States Using Scalp EEG Cross-Frequency Coupling Features. IEEE Trans. Biomed. Eng. 2018, 65, 2440–2449. [Google Scholar] [CrossRef]
- Patidar, S.; Panigrahi, T. Detection of Epileptic Seizure Using Kraskov Entropy Applied on Tunable-Q Wavelet Transform of EEG Signals. Biomed. Signal Process. Control 2017, 34, 74–80. [Google Scholar] [CrossRef]
- Khan, H.; Marcuse, L.; Fields, M.; Swann, K.; Yener, B. Focal Onset Seizure Prediction Using Convolutional Networks. IEEE Trans. Biomed. Eng. 2018, 65, 2109–2118. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Ren, D.; Li, K.; Feng, Y.; Ma, D.; Yan, X.; Wang, G. Epileptic Seizure Detection in Long-Term EEG Recordings by Using Wavelet-Based Directed Transfer Function. IEEE Trans. Biomed. Eng. 2018, 65, 2591–2599. [Google Scholar] [CrossRef]
- Kalbkhani, H.; Shayesteh, M.G. Stockwell Transform for Epileptic Seizure Detection from EEG Signals. Biomed. Signal Process. Control 2017, 38, 108–118. [Google Scholar] [CrossRef]
- Kaleem, M.; Guergachi, A.; Krishnan, S. Patient-Specific Seizure Detection in Long-Term EEG Using Wavelet Decomposition. Biomed. Signal Process. Control 2018, 46, 157–165. [Google Scholar] [CrossRef]
- Jia, J.; Goparaju, B.; Song, J.; Zhang, R.; Westover, M.B. Automated Identification of Epileptic Seizures in EEG Signals Based on Phase Space Representation and Statistical Features in the CEEMD Domain. Biomed. Signal Process. Control 2017, 38, 148–157. [Google Scholar] [CrossRef]
- Ibrahim, S.; Djemal, R.; Alsuwailem, A. Electroencephalography (EEG) Signal Processing for Epilepsy and Autism Spectrum Disorder Diagnosis. Biocybern. Biomed. Eng. 2018, 38, 16–26. [Google Scholar] [CrossRef]
- Li, M.; Chen, W.; Zhang, T. Automatic Epileptic EEG Detection Using DT-CWT-Based Non-Linear Features. Biomed. Signal Process. Control 2017, 34, 114–125. [Google Scholar] [CrossRef]
- Li, M.; Chen, W.; Zhang, T. Classification of Epilepsy EEG Signals Using DWT-Based Envelope Analysis and Neural Network Ensemble. Biomed. Signal Process. Control 2017, 31, 357–365. [Google Scholar] [CrossRef]
- Jrad, N.; Kachenoura, A.; Merlet, I.; Bartolomei, F.; Nica, A.; Biraben, A.; Wendling, F. Automatic Detection and Classification of High-Frequency Oscillations in Depth-EEG Signals. IEEE Trans. Biomed. Eng. 2017, 64, 2230–2240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, W.; Li, M. AR Based Quadratic Feature Extraction in the VMD Domain for the Automated Seizure Detection of EEG Using Random Forest Classifier. Biomed. Signal Process. Control 2017, 31, 550–559. [Google Scholar] [CrossRef]
- Mutlu, A.Y. Detection of Epileptic Dysfunctions in EEG Signals Using Hilbert Vibration Decomposition. Biomed. Signal Process. Control 2018, 40, 33–40. [Google Scholar] [CrossRef]
- Parvez, M.Z.; Paul, M. Seizure Prediction Using Undulated Global and Local Features. IEEE Trans. Biomed. Eng. 2017, 64, 208–217. [Google Scholar] [CrossRef]
- Shiao, H.-T.; Cherkassky, V.; Lee, J.; Veber, B.; Patterson, E.E.; Brinkmann, B.H.; Worrell, G.A. SVM-Based System for Prediction of Epileptic Seizures From IEEG Signal. IEEE Trans. Biomed. Eng. 2017, 64, 1011–1022. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, A.K.; Banka, H. Local Pattern Transformation Based Feature Extraction Techniques for Classification of Epileptic EEG Signals. Biomed. Signal Process. Control 2017, 34, 81–92. [Google Scholar] [CrossRef]
- Tsiouris, Κ.Μ.; Markoula, S.; Konitsiotis, S.; Koutsouris, D.D.; Fotiadis, D.I. A Robust Unsupervised Epileptic Seizure Detection Methodology to Accelerate Large EEG Database Evaluation. Biomed. Signal Process. Control 2018, 40, 275–285. [Google Scholar] [CrossRef]
- Göksu, H. EEG Based Epileptiform Pattern Recognition inside and Outside the Seizure States. Biomed. Signal Process. Control 2018, 43, 204–215. [Google Scholar] [CrossRef]
- Chowdhury, R.; Reaz, M.; Ali, M.; Bakar, A.; Chellappan, K.; Chang, T. Surface Electromyography Signal Processing and Classification Techniques. Sensors 2013, 13, 12431–12466. [Google Scholar] [CrossRef]
- Rahman, A.; Chowdhury, M.E.H.; Khandakar, A.; Kiranyaz, S.; Zaman, K.S.; Reaz, M.B.I.; Islam, M.T.; Ezeddin, M.; Kadir, M.A. Multimodal EEG and Keystroke Dynamics Based Biometric System Using Machine Learning Algorithms. IEEE Access 2021, 9, 94625–94643. [Google Scholar] [CrossRef]
- Pathak, A.; Ramesh, A.; Mitra, A.; Majumdar, K. Automatic Seizure Detection by Modified Line Length and Mahalanobis Distance Function. Biomed. Signal Process. Control 2018, 44, 279–287. [Google Scholar] [CrossRef]
- V, K.R.; Rajagopalan, S.S.; Bhardwaj, S.; Panda, R.; Reddam, V.R.; Ganne, C.; Kenchaiah, R.; Mundlamuri, R.C.; Kandavel, T.; Majumdar, K.K.; et al. Machine Learning Detects EEG Microstate Alterations in Patients Living with Temporal Lobe Epilepsy. Seizure 2018, 61, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Kremic, E.; Subasi, A. Performance of Random Forest and SVM in Face Recognition. Int. Arab J. Inf. Technol. 2015, 13, 9. [Google Scholar]
- Aburomman, A.A.; Reaz, M.B.I. A Novel SVM-KNN-PSO Ensemble Method for Intrusion Detection System. Appl. Soft Comput. 2016, 38, 360–372. [Google Scholar] [CrossRef]
- Rahman, M.S.; Rahman, M.K.; Kaykobad, M.; Rahman, M.S. IsGPT: An Optimized Model to Identify Sub-Golgi Protein Types Using SVM and Random Forest Based Feature Selection. Artif. Intell. Med. 2018, 84, 90–100. [Google Scholar] [CrossRef]
- Raghu, S.; Sriraam, N. Classification of Focal and Non-Focal EEG Signals Using Neighborhood Component Analysis and Machine Learning Algorithms. Expert Syst. Appl. 2018, 113, 18–32. [Google Scholar] [CrossRef]
- Alickovic, E.; Kevric, J.; Subasi, A. Performance Evaluation of Empirical Mode Decomposition, Discrete Wavelet Transform, and Wavelet Packed Decomposition for Automated Epileptic Seizure Detection and Prediction. Biomed. Signal Process. Control 2018, 39, 94–102. [Google Scholar] [CrossRef]
- Gilles, J. Empirical Wavelet Transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Chang, N.-F.; Chen, T.-C.; Chiang, C.-Y.; Chen, L.-G. Channel Selection for Epilepsy Seizure Prediction Method Based on Machine Learning. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 5162–5165. [Google Scholar]
- Guirgis, M.; Chinvarun, Y.; del Campo, M.; Carlen, P.L.; Bardakjian, B.L. Defining Regions of Interest Using Cross-Frequency Coupling in Extratemporal Lobe Epilepsy Patients. J. Neural Eng. 2015, 12, 026011. [Google Scholar] [CrossRef]
- Tort, A.B.L.; Komorowski, R.; Eichenbaum, H.; Kopell, N. Measuring Phase-Amplitude Coupling Between Neuronal Oscillations of Different Frequencies. J. Neurophysiol. 2010, 104, 1195–1210. [Google Scholar] [CrossRef]
- Altunay, S.; Telatar, Z.; Erogul, O. Epileptic EEG Detection Using the Linear Prediction Error Energy. Expert Syst. Appl. 2010, 37, 5661–5665. [Google Scholar] [CrossRef]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating Mutual Information. Phys. Rev. E 2004, 69, 066138. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Sun, Z.; Tao, R.; Li, K.; Bao, G.; Yan, X. Epileptic Seizure Detection Based on Partial Directed Coherence Analysis. IEEE J. Biomed. Health Inform. 2016, 20, 873–879. [Google Scholar] [CrossRef]
- Kaminski, M.J.; Blinowska, K.J. A New Method of the Description of the Information Flow in the Brain Structures. Biol. Cybern. 1991, 65, 203–210. [Google Scholar] [CrossRef]
- Stockwell, R.G.; Mansinha, L.; Lowe, R.P. Localization of the Complex Spectrum: The S Transform. IEEE Trans. Signal Process. 1996, 44, 998–1001. [Google Scholar] [CrossRef]
- Aburomman, A.A.; Reaz, M.B.I. Ensemble SVM Classifiers Based on PCA and LDA for IDS. In Proceedings of the 2016 International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES), Putrajaya, Malaysia, 14–16 November 2016; pp. 95–99. [Google Scholar]
- Schölkopf, B.; Smola, A.; Müller, K.-R. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Comput. 1998, 10, 1299–1319. [Google Scholar] [CrossRef] [Green Version]
- Rioul, O.; Duhamel, P. Fast Algorithms for Discrete and Continuous Wavelet Transforms. IEEE Trans. Inform. Theory 1992, 38, 569–586. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, W.; Yuan, Q.; Chen, S. Automatic Seizure Detection Using Wavelet Transform and SVM in Long-Term Intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 749–755. [Google Scholar] [CrossRef]
- Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A Complete Ensemble Empirical Mode Decomposition with Adaptive Noise. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4144–4147. [Google Scholar]
- Iasemidis, L.D.; Sackellares, J.C.; Zaveri, H.P.; Williams, W.J. Phase Space Topography and the Lyapunov Exponent of Electrocorticograms in Partial Seizures. Brain Topogr. 1990, 2, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, V.; Pachori, R.B. Classification of Seizure and Nonseizure EEG Signals Using Empirical Mode Decomposition. IEEE Trans. Inform. Technol. Biomed. 2012, 16, 1135–1142. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Two-Dimensional Variational Mode Decomposition. In Energy Minimization Methods in Computer Vision and Pattern Recognition; Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2015; Volume 8932, pp. 197–208. ISBN 978-3-319-14611-9. [Google Scholar]
- Braun, S.; Feldman, M. Decomposition of Non-Stationary Signals into Varying Time Scales: Some Aspects of the EMD and HVD Methods. Mech. Syst. Signal Process. 2011, 25, 2608–2630. [Google Scholar] [CrossRef]
- Feldman, M. Time-Varying Vibration Decomposition and Analysis Based on the Hilbert Transform. J. Sound Vib. 2006, 295, 518–530. [Google Scholar] [CrossRef]
- Acar, E.; Aykut-Bingol, C.; Bingol, H.; Bro, R.; Yener, B. Multiway Analysis of Epilepsy Tensors. Bioinformatics 2007, 23, i10–i18. [Google Scholar] [CrossRef] [Green Version]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. JAIR 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Temko, A.; Nadeu, C.; Marnane, W.; Boylan, G.B.; Lightbody, G. EEG Signal Description with Spectral-Envelope-Based Speech Recognition Features for Detection of Neonatal Seizures. IEEE Trans. Inform. Technol. Biomed. 2011, 15, 839–847. [Google Scholar] [CrossRef]
- Zijlmans, M.; Jiruska, P.; Zelmann, R.; Leijten, F.S.S.; Jefferys, J.G.R.; Gotman, J. High-Frequency Oscillations as a New Biomarker in Epilepsy. Ann. Neurol. 2012, 71, 169–178. [Google Scholar] [CrossRef]
- Paul, M.; Lin, W.; Lau, C.T.; Lee, B. Direct Intermode Selection for H.264 Video Coding Using Phase Correlation. IEEE Trans. Image Process. 2011, 20, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Ye, Y.; Zhang, J.; Liu, L.; Liu, L. A Physics-Based Defects Model and Inspection Algorithm for Automatic Visual Inspection. Opt. Lasers Eng. 2014, 52, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Stacey, W.; Le Van Quyen, M.; Mormann, F.; Schulze-Bonhage, A. What Is the Present-Day EEG Evidence for a Preictal State? Epilepsy Res. 2011, 97, 243–251. [Google Scholar] [CrossRef]
- Chatlani, N.; Soraghan, J.J. Local Binary Patterns for 1-D Signal Processing. In Proceedings of the 18th European Signal Processing Conference (EUSIPCO), Aalborg, Denmark, 23–27 August 2010. [Google Scholar]
- Shoeb, A.; Guttag, J. Application of Machine Learning To Epileptic Seizure Detection. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; p. 8. [Google Scholar]
- Sikdar, D.; Roy, R.; Mahadevappa, M. Epilepsy and Seizure Characterisation by Multifractal Analysis of EEG Subbands. Biomed. Signal Process. Control 2018, 41, 264–270. [Google Scholar] [CrossRef]
Paper | Wavelet Transform Involved | Characteristics |
---|---|---|
Bhattacharyya A, Pachori R [1] | Littlewood–Paley and Meyer wavelet | Filters based on these wavelets are adaptive in the sense that they have a compact frequency support and are centered around a specific frequency. |
Jacobs D., Hilton T., Del Campo M., et al. [5] | Complex Morlet wavelet | Complex wavelet transform is less oscillatory and is advantageous in detecting and tracking instantaneous frequencies. |
Shivnarayan Patidar and Trilochan Panigrahi [6] | Daubechies filter with two vanishing moments | Filters with lower vanishing moments can be used if the filters are purposely limited in their ability to decompose signal information adequately without using many resources. |
Wang D, Ren D, Li K, et al. [8] | Daubechies order 4 wavelet Decomposition used up to fifth level | Fifth level decomposition ensures adequate signal decomposition if the user needs an output of five sub-bands with good resource trade-offs. |
Hashem Kalbkhani and Mahrokh G. Shayesteh [9] | N-point discrete Fourier transform derivative | This derivative is the basis of the Stockwell transform used by the author. It provides good resolution of time and frequency. |
Muhd Kaleem, Aziz Guergachi, and Sridhar Krishnan [10] | Level 5 Daubechies db6 wavelet is used as the mother wavelet with six vanishing moments | The higher number of vanishing moments is used here since it shows more similarity with the recorded EEG signals. |
Mingyang Li, Wanzhong Chen, and Tao Zhang [13] | Dual-tree complex wavelet transform (DT-CWT) | Compared to Discrete Wavelet Transform (DWT), the dual-tree types have approximate shift-invariance and preferable anti-aliasing. |
Decomposition Method | Sensitivity (%) | Specificity (%) | Accuracy (%) | Mean Parametric Value (%) | Classifiers | CV |
---|---|---|---|---|---|---|
Empirical wavelet transform [1] | 97.91 | 99.57 | 99.41 | 98.96 | RF | 10 |
CWT with Morlet [5] | 87.90 | 82.40 | 82.40 | 84.23 | 3RF | 5 |
Tunable Q wavelet transform [6] | 97.00 | 99.00 | 97.75 | 97.92 | LS_SVM | 10 |
Wavelet decomposition (5L-db4) [8] | 92.10 | 99.50 | 99.40 | 97.00 | RBF_SVM | 5 |
Stockwell transform—ictal [9] | 99.42 | 99.89 | 99.73 | 99.68 | k-NN | 5 |
Wavelet decomposition (5L-db6) [10] | 99.40 | 99.90 | 99.60 | 99.63 | SVM | 5 |
Dual-tree complex wavelet transform (DT-CWT) [13] | 98.0 | 100 | 98 | 98.6 | SVM | 10 |
Decomposition Method | Sensitivity% | Specificity % | Accuracy % | Mean Parametric Value (%) | Classifiers | CV |
---|---|---|---|---|---|---|
Complete ensemble empirical mode decomposition with adaptive noise [11]-sets S and (F) | 100 | 99 | 98 | 99 | RF | 10 |
Complete ensemble empirical mode decomposition with adaptive noise [11]-sets S and (F, N) | 99.50 | 100.00 | 99.00 | 99.50 | RF | 10 |
Variational mode decomposition [16] | - | - | 97.35 | - | RF | 10 |
Hilbert vibration decomposition [17] | 96 | 97.5 | 97.33 | 96.94 | LS_SVM | 10 |
99 | 99 | 97.67 | 98.56 | LS_SVM | 10 |
Decomposition Method | Sensitivity % | Specificity % | Accuracy % | Mean Parametric Value | CV | |
---|---|---|---|---|---|---|
Empirical wavelet transform [1] | 97.91 | 99.57 | 99.41 | 98.96 | 10 | |
CWT with Morlet [5] | 87.9 | 82.4 | 82.4 | 84.23 | 5 | |
Complete ensemble EMD with adaptive noise [11] | S and (F, N) | 99.5 | 100 | 99 | 99.50 | 10 |
S and (F) | 100 | 99 | 98 | 99.00 | 10 | |
Variational mode decomposition [16] | - | - | 97.532 | - | 10 |
Decomposition Method | Sensitivity % | Specificity % | Accuracy % | Mean Parametric Value | Classifiers | CV |
---|---|---|---|---|---|---|
Tunable Q wavelet transform [6] | 97 | 99 | 97.75 | 97.92 | LS_SVM | 10 |
Wavelet decomposition (5L-db4) [8] | 92.1 | 99.5 | 99.4 | 97.00 | RBF_SVM | 5 |
Wavelet decomposition (5L-db6) [10] | 99.4 | 99.9 | 99.6 | 99.63 | SVM | 5 |
Dual-tree complex wavelet transform (DT-CWT) [13] | 98.0 | 100 | 98 | 98.6 | SVM | 10 |
Hilbert vibration decomposition [17] | 99 | 99 | 97.67 | 98.56 | LS_SVM (RBF Kernel) | 10 |
Hilbert vibration decomposition [17] | 96 | 97.5 | 97.33 | 96.94 | LS_SVM (RBF Kernel) | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thangarajoo, R.G.; Reaz, M.B.I.; Srivastava, G.; Haque, F.; Ali, S.H.M.; Bakar, A.A.A.; Bhuiyan, M.A.S. Machine Learning-Based Epileptic Seizure Detection Methods Using Wavelet and EMD-Based Decomposition Techniques: A Review. Sensors 2021, 21, 8485. https://doi.org/10.3390/s21248485
Thangarajoo RG, Reaz MBI, Srivastava G, Haque F, Ali SHM, Bakar AAA, Bhuiyan MAS. Machine Learning-Based Epileptic Seizure Detection Methods Using Wavelet and EMD-Based Decomposition Techniques: A Review. Sensors. 2021; 21(24):8485. https://doi.org/10.3390/s21248485
Chicago/Turabian StyleThangarajoo, Rabindra Gandhi, Mamun Bin Ibne Reaz, Geetika Srivastava, Fahmida Haque, Sawal Hamid Md Ali, Ahmad Ashrif A. Bakar, and Mohammad Arif Sobhan Bhuiyan. 2021. "Machine Learning-Based Epileptic Seizure Detection Methods Using Wavelet and EMD-Based Decomposition Techniques: A Review" Sensors 21, no. 24: 8485. https://doi.org/10.3390/s21248485
APA StyleThangarajoo, R. G., Reaz, M. B. I., Srivastava, G., Haque, F., Ali, S. H. M., Bakar, A. A. A., & Bhuiyan, M. A. S. (2021). Machine Learning-Based Epileptic Seizure Detection Methods Using Wavelet and EMD-Based Decomposition Techniques: A Review. Sensors, 21(24), 8485. https://doi.org/10.3390/s21248485