Support for 5G Mission-Critical Applications in Software-Defined IEEE 802.11 Networks
Abstract
:1. Introduction
- we extend the network control to the IEEE 802.11 end-devices with a programmable agent, which is capable of performing monitoring and traffic shaping, and we propose a traffic shaping algorithm that controls them via a centralized controller;
- we extend our network slicing and user association algorithms to consider satisfying the QoS of flows in both UL and DL directions; and,
- we conduct a performance analysis of our approach comparing it to a state-of-the-art user association algorithm [5]. We evaluate both of the approaches in a real-world testbed with three APs, controlled by an SD-RAN and a backhaul SDN controller, and six STAs served by QoS and Best-Effort (BE) flows in both UL and DL directions. Our results show an improved load balancing of flows across APs and QoS guarantees via centralized RAN slicing and traffic shaping at the end-devices.
2. Related Work
2.1. Resource Allocation and QoS Support
2.2. User Association and Load Balancing
3. System Overview
3.1. ADWRR Scheduling Algorithm
3.2. Monitoring Queueing Delay at APs
3.3. Shaping and Monitoring UL Traffic with a Programmable Agent
4. Delay-Aware Sdn-Based Approach
4.1. Load Balancing Problem Formulation Using MCDA
4.2. Using MCDA in the User Association Algorithm
Algorithm 1 User Association Algorithm |
Input: 1: ▹ configuration loop interval (20 s used) 2: ▹ set of MCDA criteria and weights 3: ▹ max queueing delay of each slice s 4: ▹ min throughput of each slice s 5: ▹ min-avg throughput of each flow f from STA t 6: ▹ expected throughput of each STA t 7: loop 8: for each do ▹ iterate over all APs 9: getRBStats(b) 10: 11: for each random.shuffle(t) do ▹ iterate over all STAs 12: if getActiveFlows(t) then 13: getSTAExpectedLoad(t) 14: getSTAWeights(t) 15: for each do ▹ iterate over all APs 16: getRBExpectedLoad 17: if then 18: 19: 20: 21: if and then 22: doHandover ▹ handover to AP 23: 24: 25: function getSTAWeights(t) 26: for each do ▹ iterate over all flows generated at a given STA 27: if then return 28: for each do ▹ iterate over all slices of an AP 29: if or then return 30: return 31: 32: function getSTAExpectedLoad(t) 33: 34: for each do ▹ iterate over all slices of an AP 35: 36: for each do ▹ iterate over all flows generated at a given STA 37: 38: return 39: 40: function getRBExpectedLoad() 41: 42: for each do ▹ iterate over all STAs 43: if then 44: 45: return |
4.3. Network Slicing Algorithm
Algorithm 2 Network Slicing Algorithm |
Input: 1: ▹ configuration loop interval (5 s used) 2: ▹ max queueing delay of each slice s 3: ▹ min throughput of each slice s 4: ▹ min throughput of each flow f from STA t 5: , ▹ min, max quantum (10 us, 12,000 us used) 6: , ▹ increase, decrease factors (, used) 7: loop 8: for each do ▹ iterate over all APs 9: reconfigure(b,requirementsMet(b)) 10: 11: function requirementsMet(b) 12: for each do ▹ iterate over all slices of an AP 13: if then 14: if then return 15: if then 16: if then return 17: for each do ▹ iterate over all STAs 18: for each do 19: if and then 20: if then return 21: return 22: 23: function reconfigure() 24: for each do ▹ iterate over all slices of an AP 25: if and then 26: getCurrentQuantum(s) 27: 28: if then 29: if then 30: if then b.setSlice ▹ set new slice quantum on AP |
4.4. Traffic Shaping Algorithm
Algorithm 3 Traffic Shaping Algorithm |
Input: 1: ▹ configuration loop interval (5 s used) 2: ▹ max queueing delay of each slice s 3: ▹ min throughput of each slice s 4: ▹ min throughput of each flow f from STA t 5: , ▹ min, max value for The traffic shaper. (1 Mbps, 100 Mbps used) 6: , ▹ increase, decrease factors (, used) 7: loop 8: for each do ▹ iterate over all APs 9: reconfigure(b,requirementsMet(b)) 10: 11: function requirementsMet(b) 12: for each do ▹ iterate over all slices of an AP 13: if then 14: if then return 15: if then 16: if then return 17: for each do ▹ iterate over all STAs 18: for each do 19: if and then 20: if then return 21: return 22: 23: function reconfigure() 24: for each do ▹ iterate over all STAs 25: if then 26: for each do 27: if all for f in and getActiveFlows(t) then 28: getCurrentTrafficShaper(t) 29: 30: if then 31: if then 32: if then ▹ set traffic shaping on STA |
5. Evaluation
- Experiment 1: we evaluate four different scenarios to show how our network slicing and traffic shaping algorithms can provide enhanced QoS delivery when flows of different priorities classes (BE and QoS) and in different directions have to compete with one another. These scenarios were run for five minutes each, with only 200 s presented.
- Experiment 2: we compare the performance of our approach to a state-of-the-art user association approach from Gómez et al. [5]. We run flows in the DL direction and analyze whether our approach can enhance the QoS delivery of the QoS-restricted slices dedicated to such flows, at runtime. We analyze whether the QoS requirements for throughput and queueing delay can be maintained along the experiment run. This experiment was run for ten minutes.
- Experiment 3: we analyze whether our whole system can enhance QoS delivery, again in comparison to the approach from Gómez et al. We run flows in both directions and analyze whether the QoS requirements for throughput and queueing delay of slices can be maintained along the experiment run. This experiment was run for ten minutes.
5.1. Experiment 1: Traffic Shaping and Airtime-Based Network Slicing
5.1.1. Scenario A: UL BE versus UL QoS
5.1.2. Scenario B: UL BE versus DL QoS
5.1.3. Scenario C: DL BE versus UL QoS
5.1.4. Scenario D: DL BE Versus DL QoS
5.2. Experiment 2: DL QoS Delivery and User Association
5.2.1. RSSI and User Association
5.3. Experiment 3: UL/DL QoS Delivery and User Association
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A-MSDU | Aggregated MAC Service Data Unit |
ADWRR | Airtime Deficit Weighted Round Robin |
AHP | Analytic Hierarchy Process |
AP | Access Point |
API | Application Programming Interface |
ARP | Address Resolution Protocol |
BE | Best-Effort |
CDF | Comulative Ditribution Function |
CSA | Channel Switch Annoucement |
CUPS | Control/User Plane Split |
CW | Contention Window |
DCF | Distributed Coordination Function |
DL | Downlink |
DSCP | Differentiated Services Code Point |
E2E | End-to-End |
EDCA | Enhanced Distributed Channel Access |
HD | High-Definition |
HT | High Throughput |
LVAP | Light Virtual Access Point |
MAC | Medium Access Control |
MCA | Mission-Critical Application |
MCDA | Multi-Criteria Decision Analysis |
MCS | Modulation and Coding Scheme |
NIC | Network Interface Card |
QoS | Quality of Service |
QoSS | Quality of Service Slicing |
RA | Resource Allocation |
RAN | Radio Access Network |
RAT | Radio Access Technology |
RSSI | Received Signal Strength Indicator |
SD-RAN | Software-Defined Radio Access Network |
SDN | Software-Defined Networking |
SLA | Service Level Agreement |
SMA | Simple Moving Average |
SMM | Simple Moving Median |
SSID | Service Set Identifier |
STA | Station |
TCP | Transmission Control Protocol |
TOPSIS | Technique for Order of Preference by Similarity to Ideal Solution |
TXOP | Transmission Opportunity |
UDP | User Datagram Protocol |
UL | Uplink |
URLLC | Untral-Reliably Low Latency Communication |
VHT | Very High Throughput |
References
- 5GPPP Architecture Working Group. View on 5G Architecture. Available online: https://5g-ppp.eu/wp-content/uploads/2018/01/5G-PPP-5G-Architecture-White-Paper-Jan-2018-v2.0.pdf (accessed on 19 January 2021).
- 3GPP. Service Requirements for the 5G System; Technical Specification (TS) 22.261; 3rd Generation Partnership Project (3GPP): Valbonne, France, 2020; Version 18.0.0. [Google Scholar]
- Coronado, E.; Riggio, R.; Villalón, J.; Garrido, A. Wi-balance: Channel-aware user association in software-defined Wi-Fi networks. In Proceedings of the NOMS 2018—2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018; pp. 1–9. [Google Scholar]
- Coronado, E.; Riggio, R.; Villa1ón, J.; Garrido, A. Lasagna: Programming Abstractions for End-to-End Slicing in Software-Defined WLANs. In Proceedings of the 2018 IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Chania, Greece, 12–15 June 2018; pp. 14–15. [Google Scholar]
- Gómez, B.; Coronado, E.; Villalón, J.; Riggio, R.; Garrido, A. User Association in Software-Defined Wi-Fi Networks for Enhanced Resource Allocation. In Proceedings of the IEEE WCNC 2020 Conference, Virtual Conference, 25–28 May 2020. [Google Scholar]
- Aijaz, A. High-Performance Industrial Wireless: Achieving Reliable and Deterministic Connectivity Over IEEE 802.11 WLANs. IEEE Open J. Ind. Electron. Soc. 2020, 1, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Wickboldt, J.A.; Jesus, W.P.D.; Isolani, P.H.; Both, C.B.; Rochol, J.; Granville, L.Z. Software-defined networking: Management requirements and challenges. IEEE Commun. Mag. 2015, 53, 278–285. [Google Scholar] [CrossRef]
- Alliance, N. Perspectives on Vertical Industries and Implications for 5G; White Paper; NGMN Alliance: Berkshire, UK, 2016. [Google Scholar]
- Vassilaras, S.; Gkatzikis, L.; Liakopoulos, N.; Stiakogiannakis, I.N.; Qi, M.; Shi, L.; Liu, L.; Debbah, M.; Paschos, G.S. The Algorithmic Aspects of Network Slicing. IEEE Commun. Mag. 2017, 55, 112–119. [Google Scholar] [CrossRef]
- 3GPP. Study on Management and Orchestration of Network Slicing for Next Generation Network; Technical Report TR 28.801 V15.0.0T; 3rd Generation Partnership Project (3GPP): Valbonne, France, 2017. [Google Scholar]
- Coronado, E.; Khan, S.N.; Riggio, R. 5G-EmPOWER: A Software-Defined Networking Platform for 5G Radio Access Networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 715–728. [Google Scholar] [CrossRef]
- Fendt, A.; Schmelz, L.C.; Wajda, W.; Lohmüller, S.; Bauer, B. A Network Slice Resource Allocation Process in 5G Mobile Networks. In Proceedings of the 12th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Kunibiki Messe, Matsue, Japan, 4–6 July 2018. [Google Scholar]
- Richart, M.; Baliosian, J.; Serrat, J.; Gorricho, J. Resource Slicing in Virtual Wireless Networks: A Survey. IEEE Trans. Netw. Serv. Manag. 2016, 13, 462–476. [Google Scholar] [CrossRef] [Green Version]
- Richart, M.; Baliosian, J.; Serrati, J.; Gorricho, J.; Agüero, R.; Agoulmine, N. Resource allocation for network slicing in WiFi access points. In Proceedings of the 2017 13th International Conference on Network and Service Management (CNSM), Tokyo, Japan, 26–30 November 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Høiland-Jørgensen, T.; Kazior, M.; Täht, D.; Hurtig, P.; Brunstrom, A. Ending The Anomaly: Achieving Low Latency and Airtime Fairness in WiFi. In Proceedings of the 2017 USENIX Annual Technical Conference (USENIX ATC 17), Santa Clara, CA, USA, 12–14 July 2017; pp. 139–151. [Google Scholar]
- Aleixendri, J.J.; Betzler, A.; Camps-Mur, D. A practical approach to slicing Wi-Fi RANs in future 5G networks. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakech, Morocco, 15–19 April 2019; pp. 1–6. [Google Scholar]
- Høiland-Jørgensen, T.; Hurtig, P.; Brunstrom, A. PoliFi: Airtime Policy Enforcement for WiFi. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakech, Morocco, 15–19 April 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Isolani, P.H.; Cardona, N.; Donato, C.; Marquez-Barja, J.; Granville, L.Z.; Latré, S. SDN-based Slice Orchestration and MAC Management for QoS delivery in IEEE 802.11 Networks. In Proceedings of the 2019 Sixth International Conference on Software Defined Systems (SDS), Rome, Italy, 10–13 June 2019; pp. 260–265. [Google Scholar] [CrossRef]
- Isolani, P.H.; Cardona, N.; Donato, C.; Pérez, G.A.; Marquez-Barja, J.M.; Granville, L.Z.; Latré, S. Airtime-Based Resource Allocation Modeling for Network Slicing in IEEE 802.11 RANs. IEEE Commun. Lett. 2020, 24, 1077–1080. [Google Scholar] [CrossRef]
- Richart, M.; Baliosian, J.; Serrat, J.; Gorricho, J.L.; Agüero, R. Slicing with Guaranteed Quality of Service in WiFi Networks. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1822–1837. [Google Scholar] [CrossRef]
- Isolani, P.H.; Kulenkamp, D.J.; Marquez-Barja, J.M.; Latré, S.; Syrotiuk, V.R. Delay-Aware Slicing and MAC Management Using MCDA in IEEE 802.11 SD-RANs. Unpublished work. 2021. [Google Scholar]
- Agiwal, M.; Roy, A.; Saxena, N. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification. Amendment 8: Medium Access Control (MAC) Quality of Service (QoS); ANSI/IEEE Std 802.11e; LAN/MAN Standards Committee of the IEEE Computer Society Std.: New York, NY, USA, 2005. [Google Scholar]
- Luo, H.; Shyu, M. An Optimized Scheduling Scheme to Provide Quality of Service in 802.11e Wireless LAN. In Proceedings of the 2009 11th IEEE International Symposium on Multimedia, San Diego, CA, USA, 14–16 December 2009; pp. 651–656. [Google Scholar] [CrossRef]
- Serrano, P.; Banchs, A.; Patras, P.; Azcorra, A. Optimal Configuration of 802.11e EDCA for Real-Time and Data Traffic. IEEE Trans. Veh. Technol. 2010, 59, 2511–2528. [Google Scholar] [CrossRef] [Green Version]
- Pang, W.L.; Chieng, D.; Ahmad, N.N. Adaptive Priority Sliding Admission Control and Scheduling Scheme for DCF and EDCA WLANs. Wirel. Pers. Commun. 2013, 70, 295–321. [Google Scholar] [CrossRef]
- Charfi, E.; Gueguen, C.; Chaari, L.; Cousin, B.; Kamoun, L. Dynamic frame aggregation scheduler for multimedia applications in IEEE 802.11n networks. Trans. Emerg. Telecommun. Technol. 2017, 28, e2942. [Google Scholar] [CrossRef]
- Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 5: Enhancements for Higher Throughput; ANSI/IEEE Std 802.11n; LAN/MAN Standards Committee of The IEEE Computer Society Std.: New York, NY, USA, 2009. [Google Scholar]
- Sarret, M.G.; Ashta, J.S.; Mogensen, P.; Catania, D.; Cattoni, A.F. A Multi-QoS Aggregation Mechanism for Improved Fairness in WLAN. In Proceedings of the 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Las Vegas, NV, USA, 2–5 September 2013; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; An, S. Throughput enhancement by Dynamic Frame Aggregation in multi-rate WLANs. In Proceedings of the 2012 19th IEEE Symposium on Communications and Vehicular Technology in The Benelux (SCVT), Eindhoven, The Netherlands, 16 November 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Azhari, S.V.; Gurbuz, O.; Ercetin, O. QoS based aggregation in high speed IEEE802.11 wireless networks. In Proceedings of the 2016 Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Vilanova i la Geltrú, Spain, 21–21 June 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Maqhat, B.; Dani Baba, M.; Rahman, R.A.; Saif, A. Performance analysis of fair scheduler for A-MSDU aggregation in IEEE802.11n wireless networks. In Proceedings of the 2014 2nd International Conference on Electrical, Electronics and System Engineering (ICEESE), Kuala Lumpur, Malaysia, 9–10 December 2014; pp. 60–65. [Google Scholar] [CrossRef]
- Seytnazarov, S.; Kim, Y. QoS-Aware Adaptive A-MPDU Aggregation Scheduler for Voice Traffic in Aggregation-Enabled High Throughput WLANs. IEEE Trans. Mob. Comput. 2017, 16, 2862–2875. [Google Scholar] [CrossRef]
- Banchs, A.; Serrano, P.; Patras, P.; Natkaniec, M. Providing Throughput and Fairness Guarantees in Virtualized WLANs Through Control Theory. Mob. Netw. Appl. 2012, 17, 435–446. [Google Scholar] [CrossRef]
- Nakauchi, K.; Shoji, Y.; Nishinaga, N. Airtime-based resource control in wireless LANs for wireless network virtualization. In Proceedings of the 2012 Fourth International Conference on Ubiquitous and Future Networks (ICUFN), Phuket, Thailand, 4–6 July 2012; pp. 166–169. [Google Scholar] [CrossRef]
- Guo, K.; Sanadhya, S.; Woo, T. ViFi: Virtualizing WLAN Using Commodity Hardware. In Proceedings of the 9th ACM Workshop on Mobility in The Evolving Internet Architecture, MobiArch ’14, Maui, HI, USA, 11 September 2014; ACM: New York, NY, USA, 2014; pp. 25–30. [Google Scholar] [CrossRef]
- Derakhshani, M.; Wang, X.; Tweed, D.; Le-Ngoc, T.; Leon-Garcia, A. AP-STA Association Control for Throughput Maximization in Virtualized WiFi Networks. IEEE Access 2018, 6, 45034–45050. [Google Scholar] [CrossRef]
- Smith, G.; Chaturvedi, A.; Mishra, A.; Banerjee, S. Wireless Virtualization on Commodity 802.11 Hardware. In Proceedings of the Second ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization, WinTECH ’07, Montreal, QC, Canada, 10 September 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 75–82. [Google Scholar] [CrossRef]
- Bhanage, G.; Vete, D.; Seskar, I.; Raychaudhuri, D. SplitAP: Leveraging Wireless Network Virtualization for Flexible Sharing of WLANs. In Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM 2010, Miami, FL, USA, 6–10 December 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Mahindra, R.; Bhanage, G.D.; Hadjichristofi, G.; Seskar, I.; Raychaudhuri, D.; Zhang, Y.Y. Space Versus Time Separation for Wireless Virtualization on an Indoor Grid. In Proceedings of the 2008 Next Generation Internet Networks, Kraków, Poland, 28–30 April 2008; pp. 215–222. [Google Scholar]
- Katsalis, K.; Choumas, K.; Korakis, T.; Tassiulas, L. Virtual 802.11 wireless networks with guaranteed throughout sharing. In Proceedings of the 2015 IEEE Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, 6–9 July 2015; pp. 845–850. [Google Scholar] [CrossRef]
- Xia, L.; Kumar, S.; Yang, X.; Gopalakrishnan, P.; Liu, Y.; Schoenberg, S.; Guo, X. Virtual WiFi: Bring Virtualization from Wired to Wireless. SIGPLAN Not. 2011, 46, 181–192. [Google Scholar] [CrossRef]
- Heusse, M.; Rousseau, F.; Berger-Sabbatel, G.; Duda, A. Performance anomaly of 802.11b. In Proceedings of the IEEE INFOCOM 2003, Twenty-Second Annual Joint Conference of The IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428), San Francisco, CA, USA, 30 March–2 April 2003; Volume 2, pp. 836–843. [Google Scholar] [CrossRef]
- Murty, R.; Padhye, J.; Chandra, R.; Wolman, A.; Zill, B. Designing High Performance Enterprise Wi-Fi Networks. In Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, NSDI’08, San Francisco, CA, USA, 16–18 April 2008; USENIX Association: Berkeley, CA, USA, 2008; pp. 73–88. [Google Scholar]
- Murty, R.; Padhye, J.; Wolman, A.; Welsh, M. Dyson: An Architecture for Extensible Wireless LANs. In Proceedings of the Usenix annual Technical Conference, Boston, MA, USA, 23–25 June 2010. [Google Scholar]
- Suresh, L.; Schulz-Zander, J.; Merz, R.; Feldmann, A.; Vazao, T. Towards Programmable Enterprise WLANS with Odin. In Proceedings of the First Workshop on Hot Topics in Software Defined Networks, Helsinki, Finland, 13–17 August 2012; ACM: New York, NY, USA, 2012; pp. 115–120. [Google Scholar] [CrossRef]
- Rangisetti, A.K.; Baldaniya, H.B.; B, P.K.; Tamma, B.R. Load-aware hand-offs in software defined wireless LANs. In Proceedings of the 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Larnaca, Cyprus, 8–10 October 2014; pp. 685–690. [Google Scholar] [CrossRef]
- Sen, A.; Sivalingam, K.M. An SDN framework for seamless mobility in enterprise WLANs. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2015; pp. 1985–1990. [Google Scholar] [CrossRef]
- Zubow, A.; Zehl, S.; Wolisz, A. BIGAP—Seamless handover in high performance enterprise IEEE 802.11 networks. In Proceedings of the NOMS 2016—2016 IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey, 25–29 April 2016; pp. 445–453. [Google Scholar] [CrossRef]
- Wang, H.; Ooi, W.T.; Chan, M.C. JurCast: Joint user and rate allocation for video multicast over multiple APs. In Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–15 April 2016; pp. 1–9. [Google Scholar] [CrossRef]
- Rodrigues de Sa, F.; da Cunha, A.M.; de Azevedo Castro Cesar, C. Effective AP Association in SDWN Based on Signal Strength and Occupancy Rate. In Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, 9–12 October 2017; pp. 159–162. [Google Scholar] [CrossRef]
- Aldhaibani, O.; Bouhafs, F.; Makay, M.; Raschellá, A. An SDN-Based Architecture for Smart Handover to Improve QoE in IEEE 802.11 WLANs. In Proceedings of the 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA), Kraków, Poland, 16–18 May 2018; pp. 287–292. [Google Scholar]
- Zeljković, E.; Marquez-Barja, J.M.; Kassler, A.; Riggio, R.; Latré, S. Proactive Access Point Driven Handovers in IEEE 802.11 Networks. In Proceedings of the 2018 14th International Conference on Network and Service Management (CNSM), Rome, Italy, 5–9 November 2018; pp. 261–267. [Google Scholar]
- Zeljković, E.; Slamnik-Kriještorac, N.; Latré, S.; Marquez-Barja, J.M. ABRAHAM: Machine Learning Backed Proactive Handover Algorithm Using SDN. IEEE Trans. Netw. Serv. Manag. 2019, 16, 1522–1536. [Google Scholar] [CrossRef]
- Bayhan, S.; Coronado, E.; Riggio, R.; Zubow, A. User-AP Association Management in Software-Defined WLANs. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1838–1852. [Google Scholar] [CrossRef]
- Kohler, E.; Morris, R.; Chen, B.; Jannotti, J.; Kaashoek, M.F. The Click Modular Router. ACM Trans. Comput. Syst. (TOCS) 2000, 18, 263–297. [Google Scholar] [CrossRef]
- McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J. OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun. 2008, 38, 69–74. [Google Scholar] [CrossRef]
- Xia, D.; Hart, J.; Fu, Q. Evaluation of The Minstrel rate adaptation algorithm in IEEE 802.11g WLANs. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013; pp. 2223–2228. [Google Scholar] [CrossRef]
- Blake, S.; Black, D.L.; Carlson, M.A.; Davies, E.; Wang, Z.; Weiss, W. An Architecture for Differentiated Services. RFC 2475, RFC Editor, 1998. Available online: http://www.rfc-editor.org/rfc/rfc2475.txt (accessed on 19 January 2021).
- Goepel, K.D. Implementation of an Online Software Tool for The Analytic Hierarchy Process (AHP-OS). Int. J. Anal. Hierarchy Process. 2018, 10, 469–487. [Google Scholar] [CrossRef] [Green Version]
- Wątróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised framework for multi-criteria method selection. Omega 2019, 86, 107–124. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Methods for multiple attribute decision making. In Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar]
- Jeong, J.; Choi, S.; Kim, C.-k. Achieving weighted fairness between uplink and downlink in IEEE 802.11 DCF-based WLANs. In Proceedings of the Second International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’05), Lake Vista, FL, USA, 24 August 2005; pp. 10–22. [Google Scholar] [CrossRef]
Target | Resource Allocation/Isolation Method | Evaluation | Ref. | |
---|---|---|---|---|
UL | DL | |||
Airtime fairness via slicing | EDCA parameters | None | Simulation in Matlab | [34] |
Airtime control via slicing | EDCA parameters | Simulation in QualNet | [35] | |
Slice scheduling and traffic shaping | Testbed experimentation | [36] | ||
None | Simulation in Matlab | [37] | ||
None | Slice scheduling shaping | [20] | ||
Experiment isolation in testbed | Slice scheduling | Slice scheduling | Testbed experimentation | [38] |
Traffic isolation in testbed | Traffic shaping | None | [39] | |
Experimentation coexistence in testbed | None | Traffic shaping | [40] | |
Throughput guarantees | Slice scheduling | [41] | ||
STA virtualization in testbed | [42] | |||
Airtime control and traffic isolation via slicing | Simulation in NS3 | [14] | ||
[15] | ||||
Slice scheduling (indirect) | [16] | |||
Testbed experimentation | [4] | |||
Airtime policy enforcement mechanism | None | [17] | ||
Adaptive airtime-based slice orchestration | [18] | |||
Optimal airtime-based RA modelling for network slicing | Testbed experimentation and theoretical analysis | [19] | ||
Main Target | Input Parameters/Metrics | Evaluation | Ref. |
---|---|---|---|
Support high-density AP deployment | RSSIs from both STAs and APs | Testbed experimentation | [44] |
Customization and control of high-level policies | RSSIs, packets/bytes counters, airtime utilization, transmission failures, and re-transmissions | [45] | |
Mobility support and throughput enhancements | RSSIs, AP load, STA/AP distance, and STAs’ assignment status | [53] | |
RSSIs, AP load, location, and STAs’ assignment status | [54] | ||
Users’ activity time and SNR of beacons and probe requests | [49] | ||
RSSIs and load of APs | [47] | ||
SNR of probe requests and APs’ channel utilization | [51] | ||
RSSIs, average load of APs, and average channel occupancy | [3] | ||
Average RSSIs, average load of APs, and average channel occupancy | [5] | ||
RSSI threshold | [46] | ||
OMNeT++ simulation | [48] | ||
Load balancing, QoS and QoE support | SINR, bandwidth, jitter, and delay | OPNET simulation | [52] |
Mobility support and multicast | Video quality, user demand, and RSSI of beacons | Testbed experimentation and simulation | [50] |
AP load, STAs’ SNR, and throughput requirements | [55] |
Symbol | Description |
---|---|
n | The number of services to be delivered. |
B | The set of APs of The network. |
The set of slices of AP, . | |
T | Set of STAs of The network. |
True if STA is associated with AP . | |
The measured RSSI from STA t on AP b. | |
The set of flows measured from STA t. | |
f | A flow measured from an STA, . |
The overall channel load of AP b. | |
, , | The measured queueing delay of AP b, of slice s, and of STA t. |
The maximum queueing delay threshold of slice s. | |
The measured throughput of AP b. | |
The measured throughput of slice s. | |
The throughput of flow f measured from STA t. | |
The minimum throughput threshold of slice s. | |
The minimum throughput threshold for flow f measured from STA t. | |
, | The overall expected throughput of AP b, and from STA t. |
, | The expected throughput for STA t in slice s, and of flow f from STA t. |
The set of MCDA criteria. | |
, | The set of MCDA weights used for The BE and QoS flows. |
The set of MCDA weights used for t. | |
The set of monitoring statistics of b. | |
The highest-ranked AP b of a given STA. . | |
The subset of APs involved in handovers. . | |
The quantum value of slice s. | |
The new quantum value calculated for slice s. | |
, | The minimum and maximum quantum value for slices. |
, | The increase and decrease factor for adapting The quantum value of slices. |
The used factor for adapting The quantum value of a slice. | |
The traffic shaping value for STA t. | |
The new traffic shaping value calculated for STA t. | |
The loss introduced by The traffic shaping at STA t. | |
, | The minimum and maximum traffic shaping value of STAs. |
, | The increase and decrease factor for performing traffic shaping on STAs. |
The used factor for performing traffic shaping of an STA. |
Criterion | Objective | Description | ||
---|---|---|---|---|
MIN | 0.05 | 0.10 | Overall channel load of b. | |
MIN | 0.10 | 0.10 | Measured throughput of b. | |
MIN | 0.40 | 0.10 | Overall expected throughput of b. | |
MIN | 0.10 | 0.10 | Measured average queueing delay of b. | |
MAX | 0.15 | 0.20 | Measured RSSI from STA t of b. | |
MAX | 0.20 | 0.40 | True if STA t is associated with b. |
Scenario | Flow | STA | Direction | / | ||
---|---|---|---|---|---|---|
A | BE | 1 | UL | 30 Mbps | N/A | N/A |
QoS | 2 | UL | 15 Mbps | 10 Mbps | N/A | |
B | BE | 1 | UL | 30 Mbps | N/A | N/A |
QoS | 2 | DL | 20 Mbps | N/A | 30 ms | |
C | BE | 1 | DL | 30 Mbps | N/A | N/A |
QoS | 2 | UL | 15 Mbps | 10 Mbps | N/A | |
D | BE | 1 | DL | 30 Mbps | N/A | N/A |
QoS | 2 | DL | 15 Mbps | N/A | 30 ms |
Event | Time (s) | Flow | STA | Direction | / | ||
---|---|---|---|---|---|---|---|
1 | 10 | BE 3 | 3 | DL | 20 Mbps | N/A | N/A |
BE 4 | 4 | DL | 20 Mbps | N/A | N/A | ||
2 | 70 | BE 1 | 2 | DL | 20 Mbps | N/A | N/A |
BE 2 | 5 | DL | 20 Mbps | N/A | N/A | ||
3 | 130 | BE 3 | 3 | DL | 0 Mbps | N/A | N/A |
BE 4 | 4 | DL | 0 Mbps | N/A | N/A | ||
4 | 190 | QoS 1 | 1 | DL | 10 Mbps | 10 Mbps | 5 ms |
QoS 2 | 6 | DL | 8 Mbps | 5 Mbps | 100 ms | ||
BE 3 | 3 | DL | 30 Mbps | N/A | N/A | ||
BE 4 | 4 | DL | 30 Mbps | N/A | N/A |
Event | Time (s) | Flow | STA | Direction | / | ||
---|---|---|---|---|---|---|---|
1 | 10 | BE 3 | 5 | DL | 20 Mbps | N/A | N/A |
BE 4 | 6 | DL | 20 Mbps | N/A | N/A | ||
2 | 70 | BE 1 | 1 | UL | 20 Mbps | N/A | N/A |
BE 2 | 3 | UL | 20 Mbps | N/A | N/A | ||
3 | 130 | BE 3 | 5 | DL | 0 Mbps | N/A | N/A |
BE 4 | 6 | DL | 0 Mbps | N/A | N/A | ||
4 | 190 | QoS 1 | 4 | DL | 10 Mbps | 10 Mbps | 5 ms |
QoS 2 | 2 | UL | 10 Mbps | 5 Mbps | N/A | ||
BE 3 | 5 | DL | 30 Mbps | N/A | N/A | ||
BE 4 | 6 | DL | 30 Mbps | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isolani, P.H.; Kulenkamp, D.J.; Marquez-Barja, J.M.; Granville, L.Z.; Latré, S.; Syrotiuk, V.R. Support for 5G Mission-Critical Applications in Software-Defined IEEE 802.11 Networks. Sensors 2021, 21, 693. https://doi.org/10.3390/s21030693
Isolani PH, Kulenkamp DJ, Marquez-Barja JM, Granville LZ, Latré S, Syrotiuk VR. Support for 5G Mission-Critical Applications in Software-Defined IEEE 802.11 Networks. Sensors. 2021; 21(3):693. https://doi.org/10.3390/s21030693
Chicago/Turabian StyleIsolani, Pedro H., Daniel J. Kulenkamp, Johann M. Marquez-Barja, Lisandro Z. Granville, Steven Latré, and Violet R. Syrotiuk. 2021. "Support for 5G Mission-Critical Applications in Software-Defined IEEE 802.11 Networks" Sensors 21, no. 3: 693. https://doi.org/10.3390/s21030693
APA StyleIsolani, P. H., Kulenkamp, D. J., Marquez-Barja, J. M., Granville, L. Z., Latré, S., & Syrotiuk, V. R. (2021). Support for 5G Mission-Critical Applications in Software-Defined IEEE 802.11 Networks. Sensors, 21(3), 693. https://doi.org/10.3390/s21030693