Dual Band and Dual Diversity Four-Element MIMO Dipole for 5G Handsets
Abstract
:1. Introduction
2. Discussion on Related Works
3. Antenna Design
4. Performance Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chattha, H.T. 4-Port 2-Element MIMO Antenna for 5G Portable Applications. IEEE Access 2019, 7, 96516–96520. [Google Scholar] [CrossRef]
- Jamshed, M.A.; Nauman, A.; Abbasi, M.A.B.; Kim, S.W. Antenna Selection and Designing for THz Applications: Suitability and Performance Evaluation: A Survey. IEEE Access 2020, 8, 113246–113261. [Google Scholar] [CrossRef]
- Liu, D.; Hong, W.; Rappaport, T.S.; Luxey, C.; Hong, W. What will 5G Antennas and Propagation Be? IEEE Trans. Antennas Propag. 2017, 65, 6205–6212. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, B.; Su, Z.; Zhang, X. Development challenges for 5G base station antennas. In Proceedings of the 2018 International Workshop on Antenna Technology (iWAT), Nanjing, China, 5–7 March 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Zhai, H.; Xi, L.; Zang, Y.; Li, L. A Low-Profile Dual-Polarized High-Isolation MIMO Antenna Arrays for Wideband Base-Station Applications. IEEE Trans. Antennas Propag. 2018, 66, 191–202. [Google Scholar] [CrossRef]
- Huang, H.; Li, X.; Liu, Y. 5G MIMO Antenna Based on Vector Synthetic Mechanism. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1052–1055. [Google Scholar] [CrossRef]
- Alieldin, A.; Huang, Y.; Boyes, S.J.; Stanley, M.; Joseph, S.D.; Al-Juboori, B. A Dual-Broadband Dual-Polarized Fylfot-Shaped Antenna for Mobile Base Stations Using MIMO Over-Lapped Antenna Subarrays. IEEE Access 2018, 6, 50260–50271. [Google Scholar] [CrossRef]
- Biswas, A.; Gupta, V.R. Novel Compact Planar Four-Element MIMO Antenna for 4G/5G Applications. In Nanoelectronics, Circuits and Communication Systems; Lecture Notes in Electrical Engineering; Nath, V., Mandal, J., Eds.; Springer: Singapore, 2021; Volume 692. [Google Scholar] [CrossRef]
- Chataut, R.; Akl, R. Massive MIMO Systems for 5G and beyond Networks—Overview, Recent Trends, Challenges, and Future Research Direction. Sensors 2020, 20, 2753. [Google Scholar] [CrossRef]
- Shoaib, S.; Shoaib, I.; Shoaib, N.; Chen, X.; Parini, C.G. MIMO Antennas for Mobile Handsets. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 799–802. [Google Scholar] [CrossRef]
- Kumar Saurabh, A.; Singh Rathore, P.; Kumar Meshram, M. Compact wideband four-element MIMO antenna with high isolation. Electron. Lett. 2020, 56, 117–119. [Google Scholar] [CrossRef]
- Choi, J.; Hwang, W.; You, C.; Jung, B.; Hong, W. Four-Element Reconfigurable Coupled Loop MIMO Antenna Featuring LTE Full-Band Operation for Metallic-Rimmed Smartphone. IEEE Trans. Antennas Propag. 2019, 67, 99–107. [Google Scholar] [CrossRef]
- Wong, K.-L.; Wan, C.-C.; Chen, L.-Y. Self-decoupled compact metal-frame LTE MIMO antennas for the smartphone. Microw. Opt. Technol. Lett. 2018, 60, 1170–1179. [Google Scholar] [CrossRef]
- Shoaib, S.; Shoaib, N.; Shoaib, I.; Chen, X. Design and performance analysis of pattern reconfigurable MIMO antennas for mobile smartphones. Microw. Opt. Technol. Lett. 2017, 59, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, S.; Li, Q. A Review of Mutual Coupling in MIMO Systems. IEEE Access 2018, 6, 24706–24719. [Google Scholar] [CrossRef]
- Lee, B.; Harackiewicz, F.J.; Wi, H. Closely Mounted Mobile Handset MIMO Antenna for LTE 13 Band Application. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 411–414. [Google Scholar] [CrossRef]
- Zhao, A.; Ren, Z. Size Reduction of Self-Isolated MIMO Antenna System for 5G Mobile Phone Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 152–156. [Google Scholar] [CrossRef]
- Jamshed, M.A.; Amjad, O.; Maqsood, M.; Rehman, M.U.; Jayakody, D.N.K.; Pervaiz, H. A Dipole Sub-Array with Reduced Mutual Coupling for Large Antenna Array Applications. IEEE Access 2019, 7, 171495–171502. [Google Scholar] [CrossRef]
- Li, Z.; Du, Z.; Takahashi, M.; Saito, K.; Ito, K. Reducing Mutual Coupling of MIMO Antennas With Parasitic Elements for Mobile Terminals. IEEE Trans. Antennas Propag. 2012, 60, 473–481. [Google Scholar] [CrossRef]
- Li, Q.; Ding, C.; Yang, R.; Tan, M.; Wu, G.; Lei, X.; Jiang, X.; Fang, S.; Huang, M.; Gong, Y.; et al. Mutual Coupling Reduction between Patch Antennas Using Meander Line. Int. J. Antennas Propag. 2018, 2018, 2586382. [Google Scholar] [CrossRef]
- Qi, H.; Yin, X.; Liu, L.; Rong, Y.; Qian, H. Improving Isolation Between Closely Spaced Patch Antennas Using Interdigital Lines. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 286–289. [Google Scholar] [CrossRef]
- Iffat Naqvi, S.; Hussain, N.; Iqbal, A.; Rahman, M.; Forsat, M.; Mirjavadi, S.S.; Amin, Y. Integrated LTE and Millimeter-Wave 5G MIMO Antenna System for 4G/5G Wireless Terminals. Sensors 2020, 20, 3926. [Google Scholar] [CrossRef]
- Jamshed, M.A.; Amjad, O.; Maqsood, M. Layered structure printed dipole antenna with integrated balun for phased array radars. In Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 3–4 March 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Diallo, A.; Luxey, C.; Thuc, P.L.; Staraj, R.; Kossiavas, G. Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS 1800 and UMTS bands. IEEE Trans. Antennas Propag. 2006, 54, 3063–3074. [Google Scholar] [CrossRef]
- Su, S.; Lee, C.; Chang, F. Printed MIMO-Antenna System Using Neutralization-Line Technique for Wireless USB-Dongle Applications. IEEE Trans. Antennas Propag. 2012, 60, 456–463. [Google Scholar] [CrossRef]
- Zhang, S.; Pedersen, G.F. Mutual Coupling Reduction for UWB MIMO Antennas with a Wideband Neutralization Line. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 166–169. [Google Scholar] [CrossRef]
- OuYang, J.; Yang, F.; Wang, Z.M. Reducing Mutual Coupling of Closely Spaced Microstrip MIMO Antennas for WLAN Application. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 310–313. [Google Scholar] [CrossRef]
- Shin, H.; Lee, J.H. Capacity of multiple-antenna fading channels: Spatial fading correlation, double scattering, and keyhole. IEEE Trans. Inf. Theory 2003, 49, 2636–2647. [Google Scholar] [CrossRef] [Green Version]
- ICNIRP. Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic and Electromagnetic Fields (100 kHz to 300 GHz). Available online: https://www.icnirp.org/cms/upload/consultation-upload/ICNIRP-RFGuidelines-PCD-2018-07-11.pdf (accessed on 15 November 2020).
Antenna Element | La | Lb | Lc | Ld | Wa | Wb |
---|---|---|---|---|---|---|
Antenna 1 | 13.47 | 0.7 | 13.7 | 16 | 4.48 | 3.22 |
Antenna 2 | 13.32 | 0.7 | 13.7 | 16 | 4.48 | 3.22 |
Antenna 3 | 19.04 | 1 | 12.8 | 17 | 3.4 | 2.24 |
Antenna 4 | 19.04 | 1 | 12.8 | 17 | 1.6 | 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamshed, M.A.; Ur-Rehman, M.; Frnda, J.; Althuwayb, A.A.; Nauman, A.; Cengiz, K. Dual Band and Dual Diversity Four-Element MIMO Dipole for 5G Handsets. Sensors 2021, 21, 767. https://doi.org/10.3390/s21030767
Jamshed MA, Ur-Rehman M, Frnda J, Althuwayb AA, Nauman A, Cengiz K. Dual Band and Dual Diversity Four-Element MIMO Dipole for 5G Handsets. Sensors. 2021; 21(3):767. https://doi.org/10.3390/s21030767
Chicago/Turabian StyleJamshed, Muhammad Ali, Masood Ur-Rehman, Jaroslav Frnda, Ayman A. Althuwayb, Ali Nauman, and Korhan Cengiz. 2021. "Dual Band and Dual Diversity Four-Element MIMO Dipole for 5G Handsets" Sensors 21, no. 3: 767. https://doi.org/10.3390/s21030767
APA StyleJamshed, M. A., Ur-Rehman, M., Frnda, J., Althuwayb, A. A., Nauman, A., & Cengiz, K. (2021). Dual Band and Dual Diversity Four-Element MIMO Dipole for 5G Handsets. Sensors, 21(3), 767. https://doi.org/10.3390/s21030767