Liquid-Based Reconfigurable Antenna Technology: Recent Developments, Challenges and Future
Abstract
:1. Introduction
2. Nontoxic Liquid Metals
2.1. Properties of Nontoxic Liquid Metal
2.2. Liquid Metal Actuation in Reconfigurable Antenna
3. Design Concepts of Nontoxic Liquid Metal Reconfigurable Antennas
3.1. Frequency Reconfigurable Antennas
3.1.1. Physical/Electrical Size Modification
3.1.2. Reactive Loading Using Liquid Metals
3.1.3. Other Frequency Reconfiguration Techniques
3.2. Polarization Reconfigurable Antennas
3.3. Other Reconfigurations
3.3.1. Gain and Directivity Reconfigurable Antennas
3.3.2. Phase Reconfigurable Antenna
3.3.3. Compound Reconfigurable Antennas
4. Reconfigurable Antennas Using Other Liquids
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhellar, B.; Tahir, F.A. Frequency reconfigurable antenna for hand-held wireless devices. IET Microw. Antennas Propag. 2015, 9, 1412–1417. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Kak, A.; Niez, S. 6G and Beyond: The Future of Wireless Communications Systems. IEEE Access 2020, 8, 133995–134030. [Google Scholar] [CrossRef]
- Sonkki, M.; Antonino-Daviu, E.; He, D.; Myllymaki, S. Advanced simulation methods of antennas and radio propagation for 5G and beyond communications systems. Int. J. Antennas Propag. 2020, 2020, 10–12. [Google Scholar] [CrossRef]
- Doll, A.; Dehghani, M.R. 5G and Beyond: The Power Consumption Challenge. Available online: https://www.alcansystems.com (accessed on 8 January 2020).
- Bjornson, E.; Kountouris, M.; Debbah, M. Massive MIMO and small cells: Improving energy efficiency by optimal soft-cell coordination. In Proceedings of the 2013 20th International Conference on Telecommunications ICT, Casablanca, Morocco, 6–8 May 2013; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Han, S.; Yang, C. Energy efficiency comparison of massive MIMO and small cell network. In Proceedings of the 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, GA, USA, 3–5 December 2014; pp. 617–621. [Google Scholar] [CrossRef]
- Costantine, J.; Tawk, Y.; Barbin, S.E.; Christodoulou, C.G. Reconfigurable antennas: Design and applications. Proc. IEEE 2015, 103, 424–437. [Google Scholar] [CrossRef]
- El Korany, A.S.; Saad, S.A.; Saleeb, D.A. Compact reconfigurable band notched UWB cylindrical dielectric resonator antenna using single varactor diode. Adv. Electromagn. 2018, 7, 35–39. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, Y.; Zhang, B.; Duan, J.; Yan, L. A novel RF MEMS switch on frequency reconfigurable antenna application. Microsyst. Technol. 2018, 24, 3833–3841. [Google Scholar] [CrossRef]
- Abdulraheem, Y.I.; Oguntala, G.A.; Abdullah, A.S.; Mohammed, H.J.; Ali, R.A.; Abd-Alhameed, R.A.; Noras, J.M. Design of frequency reconfigurable multiband compact antenna using two PIN diodes for WLAN/WiMAX applications. IET Microw. Antennas Propag. 2017, 11, 1098–1105. [Google Scholar] [CrossRef] [Green Version]
- Motovilova, E.; Huang, S.Y. A review on reconfigurable liquid dielectric antennas. Materials 2020, 13, 1863. [Google Scholar] [CrossRef]
- Ramli, M.N.; Soh, P.J.; Jamlos, M.F.; Lago, H.; Aziz, N.M.; Al-Hadi, A.A. Dual-band wearable fluidic antenna with metasurface embedded in a PDMS substrate. Appl. Phys. A Mater. Sci. Process. 2017, 123, 1–7. [Google Scholar] [CrossRef]
- Ramli, M.N.; Soh, P.J.; Rahim, S.K.A.; Jamlos, M.F.; Al-Hadi, A.A.; Ibrahim, M.F.; Lago, H.; Kuster, N. Flexible dual-band AMC-backed PDMS antenna with fluidic metal for WBAN and WLAN. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018; pp. 5–7. [Google Scholar] [CrossRef]
- Shah, S.I.H.; Lim, S. Microfluidically frequency-reconfigurable quasi-yagi dipole antenna. Sensors 2018, 18, 2935. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Fang, S.; Liu, H.; Fu, S. A Liquid Metal Conical Helical Antenna for Circular Polarization-Reconfigurable Antenna. Hindawi Int. J. Antennas Propag. 2016, 2016, 1–7. [Google Scholar] [CrossRef]
- Liu, P.; Yang, S.; Wang, X.; Yang, M.; Song, J.; Dong, L. Directivity-reconfigurable wideband two-arm spiral antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 66–69. [Google Scholar] [CrossRef]
- Zhang, G.B.; Gough, R.C.; Moorefield, M.R.; Elassy, K.S.; Ohta, A.T.; Shiroma, W.A. An Electrically Actuated Liquid-Metal Gain-Reconfigurable Antenna. Int. J. Antennas Propag. 2018, 2018, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Khan, M.R.; Dickey, M.D.; Adams, J.J. A compound frequency- and polarization- reconfigurable crossed dipole using multidirectional spreading of liquid metal. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 79–82. [Google Scholar] [CrossRef]
- Song, L.; Gao, W.; Chui, C.O.; Rahmat-Samii, Y. Wideband Frequency Reconfigurable Patch Antenna with Switchable Slots Based on Liquid Metal and 3-D Printed Microfluidics. IEEE Trans. Antennas Propag. 2019, 67, 2886–2895. [Google Scholar] [CrossRef]
- Eaker, C.B.; Dickey, M.D. Liquid metal actuation by electrical control of interfacial tension. Appl. Phys. Rev. 2016, 031103, 1–11. [Google Scholar] [CrossRef]
- Wang, M.; Khan, M.R.; Trlica, C.; Dickey, M.D.; Adams, J.J. Pump-free feedback control of a frequency reconfigurable liquid metal monopole. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; Volume 2015, pp. 2223–2224. [Google Scholar] [CrossRef]
- Ha, A.; Kim, K. Frequency tunable liquid metal planar inverted-F antenna. Appl. Phys. Lett. 2016, 52, 100–102. [Google Scholar] [CrossRef]
- Saghati, A.P.; Batra, J.S.; Kameoka, J.; Entesari, K. Miniature and reconfigurable CPW folded slot antennas employing liquid-metal capacitive loading. IEEE Trans. Antennas Propag. 2015, 63, 3798–3807. [Google Scholar] [CrossRef]
- He, Z.; Hua, Z.; Hongmei, L.; Fan, S.; Shu, L.; Denisov, A. A reconfigurable Yagi-Uda antenna using EGaIn liquid metal. In Proceedings of the 2017 International Symposium on Antennas and Propagation (ISAP), Phuket, Thailand, 30 October–2 November 2017; Volume 2017, pp. 1–2. [Google Scholar] [CrossRef]
- Cheng, S.; Wu, Z. Microfluidic electronics. Lab Chip 2012, 12, 2782–2791. [Google Scholar] [CrossRef]
- Khondoker, M.A.H.; Sameoto, D. Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart Mater. Struct. 2016, 25. [Google Scholar] [CrossRef] [Green Version]
- Bo, G.; Ren, L.; Xu, X.; Du, Y.; Dou, S. Recent progress on liquid metals and their applications. Adv. Phys. X 2018, 3, 412–442. [Google Scholar] [CrossRef] [Green Version]
- Zou, M.; Hu, Z.; Hua, C.; Shen, Z. Liquid Antennas. Wiley Encycl. Electr. Electron. Eng. 2016, 1–23. [Google Scholar] [CrossRef]
- Paracha, K.N.; Butt, A.D.; Alghamdi, A.S.; Babale, S.; Soh, P.J. Liquid metal antennas: Materials, fabrication and applications. Sensors 2020, 20, 177. [Google Scholar] [CrossRef] [Green Version]
- Zandvakili, M.; Honari, M.M.; Mousavi, P.; Sameoto, D. Gecko-Gaskets for Multilayer, Complex, and Stretchable Liquid Metal Microwave Circuits and Antennas. Adv. Mater. Technol. 2017, 2, 1–5. [Google Scholar] [CrossRef]
- Zhu, J.; Cheng, H. Recent development of flexible and stretchable antennas for bio-integrated electronics. Sensors 2018, 18, 4364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Doo, S.J.; Won, H.S.; Lee, W.; Jeon, J.; Chung, S.K.; Lee, G.-Y.; Oh, S.; Lee, J.-B. On-demand frequency tunability of fluidic antenna implemented with gallium-based liquid metal alloy. Esur. Phys. J. Appl. Phys. 2017, 78, 11101. [Google Scholar] [CrossRef]
- Morales, D.; Stoute, N.A.; Yu, Z.; Aspnes, D.E.; Dickey, M.D. Liquid gallium and the eutectic gallium indium (EGaIn) alloy: Dielectric functions from 1.24 to 3.1 eV by electrochemical reduction of surface oxides. Appl. Phys. Lett. 2016, 109, 1–5. [Google Scholar] [CrossRef]
- Liu, T.; Sen, P.; Kim, C.C. Measurements, Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices. J. Microelectromech. Syst. 2012, 21, 443–450. [Google Scholar] [CrossRef] [Green Version]
- Saghati, A.P.; Batra, J.S.; Kameoka, J.; Entesari, K. A Microfluidically Reconfigurable Dual-Band Slot Antenna with a Frequency Coverage Ratio of 3. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 122–125. [Google Scholar] [CrossRef]
- Dang, J.H.; Gough, R.C.; Morishita, A.M.; Ohta, A.T.; Shiroma, W.A. Liquid-metal frequency-reconfigurable slot antenna using air-bubble actuation. Electron. Lett. 2015, 51, 1630–1632. [Google Scholar] [CrossRef]
- Wang, M.; Trlica, C.; Khan, M.R.; Dickey, M.D.; Adams, J.J. A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity. J. Appl. Phys. 2015, 117, 1–5. [Google Scholar] [CrossRef]
- Dey, A.; Guldiken, R.; Mumcu, G. Microfluidically reconfigured wideband frequency-tunable liquid-metal monopole antenna. IEEE Trans. Antennas Propag. 2016, 64, 2572–2576. [Google Scholar] [CrossRef]
- Singh, S.; Taylor, J.; Zhou, H.; Pal, A.; Mehta, A.; Nakano, H.; Howland, P. A Pattern and Polarization Reconfigurable Liquid Metal Helical Antenna. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 857–858. [Google Scholar] [CrossRef] [Green Version]
- Moorefield, M.R.; Ohta, A.T.; Shiroma, W.A. A polarization-reconfigurable antipodal dipole antenna using liquid metal. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 1250–1252. [Google Scholar] [CrossRef]
- Zhang, G.B.; Gough, R.C.; Moorefield, M.R.; Cho, K.J.; Ohta, A.T.; Shiroma, W.A. A liquid-metal polarization-pattern-reconfigurable dipole antenna. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 50–53. [Google Scholar] [CrossRef]
- Gough, R.C.; Ordonez, R.C.; Moorefield, M.R.; Cho, K.J.; Shiroma, W.A.; Ohta, A.T. Reconfigurable liquid-metal antenna with integrated surface-tension actuation. In Proceedings of the 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Sendai, Japan, 17–20 April 2016; Volume 2016, pp. 66–69. [Google Scholar] [CrossRef]
- Sarabia, K.J.; Yamada, S.S.; Moorefield, M.R.; Combs, A.W.; Ohta, A.T.; Shiroma, W.A. Frequency-Reconfigurable Dipole Antenna Using Liquid-Metal Pixels. Hindawi Int. J. Antennas Propag. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zheng, P.; Zhang, B.; Duan, J.; Wang, W.; Tian, Y. Simulation Study of Cylindrical Helical Antenna based on Liquid Metal. In Proceedings of the 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 October 2018; Volume 2018, pp. 1244–1247. [Google Scholar] [CrossRef]
- Song, L.; Rahmat-Samii, Y. Reconfigurable Patch Antenna with Liquid Metal Tuning Slots and 3D Printed Microfiuidics. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 289–290. [Google Scholar] [CrossRef]
- Anwar, M.S.; Bangert, A. 3D Printed Microfluidics-Based Reconfigurable Antenna. IEEE MTT S Int. Microw. Work. Ser. Adv. Mater. Process. RF THz Appl. 2017, 1–3. [Google Scholar] [CrossRef]
- Vorobyov, A.; Henemann, C.; Dallemagne, P. Liquid Metal based antenna for wearable electronic. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; Volume 2016, pp. 1–3. [Google Scholar] [CrossRef]
- Moorefield, M.R.; Gough, R.C.; Morishita, A.M.; Dang, J.H.; Ohta, A.T.; Shiroma, W.A. Frequency-tunable patch antenna with liquid-metal-actuated loading slot. Electron. Lett. 2016, 52, 498–500. [Google Scholar] [CrossRef]
- Saghati, A.P.; Kordmahale, S.B.; Saghati, A.P.; Kameoka, J.; Entesari, K. Reconfigurable Quarter-Mode SIW Antenna Employing a Fluidically Switchable Via. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, Puerto Rico, 26 June–1 July 2016; pp. 845–846. [Google Scholar] [CrossRef]
- Floc’h, J.; Ben Trad, I. Design of mechanically reconfigurable meander antenna using the galinstan liquid metal. In Proceedings of the Loughborough Antennas & Propagation Conference (LAPC 2017), Loughborough, UK, 13–14 November 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Chen, Z.; Wong, H.; Kelly, J.R. A Polarization-Reconfigurable Glass Dielectric Resonator Antenna Using Liquid Metal. IEEE Trans. Antennas Propag. 2019, 67, 3427–3432. [Google Scholar] [CrossRef]
- Chen, Z.; Wong, H.; Xiang, J.; Kelly, J. Polarization Reconfigurable Antenna with Liquid Metal. In Proceedings of the 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), Chengdu, China, 26–28 March 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Wang, C.; Yeo, J.C.; Chu, H.; Lim, C.T.; Guo, Y.-X. Design of a reconfigurable patch antenna using the movement of liquid metal. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 974–977. [Google Scholar] [CrossRef]
- Champion, M.; Jackson, D.; Cumby, B.; Belovich, E. Polarization Reconfigurable Antennas Using a Liquid Metal Switching Mechanism. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 415–416. [Google Scholar] [CrossRef]
- Su, W.; Bahr, R.; Nauroze, S.A.; Tentzeris, M.M. 3D printed reconfigurable helical antenna based on microfluidics and liquid metal alloy. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, Puerto Rico, 26 June–1 July 2016; pp. 469–470. [Google Scholar] [CrossRef]
- Erdil, E.; Topalli, K.; Esmaeilzad, N.S.; Zorlu, Ö.; Külah, H.; Civi, O.A. Reconfigurable nested ring-split ring transmitarray unit cell employing the element rotation method by microfluidics. IEEE Trans. Antennas Propag. 2015, 63, 1163–1167. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Nauroze, S.A.; Ryan, B.; Tentzeris, M.M. Novel 3D printed liquid-metal-alloy microfluidics-based zigzag and helical antennas for origami reconfigurable antenna “trees”. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 1579–1582. [Google Scholar] [CrossRef]
- Borda-Fortuny, C.; Tong, K.-F.; Al-Armaghany, A.; Wong, K.-K. A low-cost fluids switch for frequency-reconfigurable vivaldi antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3151–3154. [Google Scholar] [CrossRef] [Green Version]
- Konca, M.; Warr, P.A. A frequency-reconfigurable antenna architecture using dielectric fluids. IEEE Trans. Antennas Propag. 2015, 63, 5280–5286. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Chen, J.-X. Microfluidically frequency-reconfigurable microstrip patch antenna and array. IEEE Access 2017, 5, 20470–20476. [Google Scholar] [CrossRef]
- Chen, Z.; Wong, H. Liquid dielectric resonator antenna with circular polarization reconfigurability. IEEE Trans. Antennas Propag. 2018, 66, 444–449. [Google Scholar] [CrossRef]
- Chen, Z.; Wong, H. Wideband glass and liquid cylindrical dielectric resonator antenna for pattern reconfigurable design. IEEE Trans. Antennas Propag. 2017, 65, 2157–2164. [Google Scholar] [CrossRef]
Properties | Galinstan | EGaIn |
---|---|---|
Material composition | Gallium (68.5%), indium (21.5%) and tin or stannum (10%). | Gallium (75.5%) and indium (24.5%) |
Appearance at room temperature | Liquid | Liquid |
Color | Silver | Silver |
Melting point(°C) | −19 | 15.5 |
Boiling Point (°C) | >1300 | 2000 |
Viscosity (Pa.s) | 2.4 × 10−3 | 2.0 × 10−3 |
Density (kg/m3) | 6440 | 6280 |
Surface tension (N/m) | 0.718 | 0.624 |
Electrical conductivity (S/m) | 3.46 × 106 | 3.4 × 106 |
Thermal conductivity (W/m.K) | 16.5 | 26.4 |
Ref | Antenna Type | Approach | Liquid Metal/Actuation | Freq. Range (GHz) | Tuning BW (%)/Tuning Ratio | Gain (dB/dBi)/ Efficiency (%) |
---|---|---|---|---|---|---|
[36] | Slot | Size modification—slotline and feed line | Galinstan/manual-air bubble | 1.42–1.84 | 26% | 4.1–4.8 dBi |
[42] | Slot | Size modification—slotline | Galinstan/electrical- continuous electrowetting (CEW) | 2.78–3.63 | 36% | - |
[22] | PIFA | Size modification—upper arm | Galinstan/manual-syringe pump | 0.698–0.746 | - | - |
[45] | Slot | Size modification—two slots on patch | EGaIn/manual | 2–3.5 | 70% | - |
[32] | Shape | Size modification—shaped pattern patch | Galinstan/manual-syringe | 2.2–9.3 | - | - |
[46] | Double patch | Size modification—two side channels | Galinstan/electrical | 14.2–15.1 | - | 3–3.7 dBi |
[47] | Loop | Size modification—flexible tube | Galinstan/manual | 0.868–2.45 1.7–1.9 | - | - |
[23] | Slot | Reactive loading—two separate channels | Galinstan/manual | 2.4, 3.5, and 5.8 | >2.5 | 1.2 dBi |
[35] | Slot | Reactive loading—five microchannels | Galinstan/manual | 1.8–3.1 3.2–5.4 | 3:1 | 1.1–3.4 dBi/ 78, 82 |
[48] | Slot | Reactive loading—open ended channel | Galinstan/manual-syringe | 1.85–2.07 | 11.2% | 2.1–4.1 dBi |
[43] | Pixelated dipole | Pixels | Galinstan/continuous electrowetting (CEW) | 1.68, 1.85, 2.12 and 2.51 | 13.6–21.6% | ±3 dBi/ 70.2–75.4 |
[49] | Quarter-mode substrate integrated waveguide (QMSIW) | Vias | Galinstan/manual | 3.2–4.7 | 1.45:1 | 4.6, 5 dBi |
[50] | Meander | Floating ground plane | Galinstan/manual-syringe | 0.5–3.9 | - | 1.32–3.12 dBi/ >60 |
Ref | Antenna Type | Design Approach/Technology | Liquid Metal/Actuation | Freq. Range (GHz) | Tuning Characteristics/Tuning Ratio | Gain (dBi/dBiC)/Efficiency (%) |
---|---|---|---|---|---|---|
[51] | DRA | Glass DRA incorporating liquid metal polarizer | Galinstan/manual | 2.4 | ±45°, 0° | >6 dBi >80 |
[52] | DRA | DRA incorporating liquid metal and dielectric liquid | Galinstan/manual | 2.4 | 90° to 45° | 2–4 dBi >70 |
[40] | Antipodal Dipole | Antipodal dipole with V-shaped channel | Galinstan/electrical | 3 | ±45° | 1.4–2.3 dBi |
[53] | Aperture coupled patch antenna | Truncated corner square patch with four triangle cavities of liquid metal | EGaIn/manual-syringe | 2.45 | LP, LHCP, RHCP | 7.24 dBi, 7.25 dBiC, 7.33 dBiC >90 |
[54] | Truncated-corner patch antenna, Annular slot antenna | Truncated at two orthogonal of square patch, Two discontinuities at 45° and 225° across the slotline | EGaIn/manual–vacuum pump | 2.5 | LP, CP | - |
[45] | Slot antenna | Rectangular patch with two asymmetrical slot and extended patch slot | EGaIn/manual | 2.4 | LP, RHCP, LHCP | >98 |
Ref | Antenna/Liquid Metal Type/Actuation | Design Approach/Technology | Reconfig. Type | Freq. Range (GHz) | Tuning Characteristics | Gain (dB/dBi)/ Efficiency (%) |
---|---|---|---|---|---|---|
[17] | Patch antenna/Galinstan/continuous electrowetting (CEW) | Rectangular patch with inset feed line and LM-filled stub | Gain | 5 | - | −5.90–4.43 dB |
[55] | Helical antenna/EGaIn/manual | Helical antenna with LM-filled turns | Gain | 5 | - | 5–9 dBi |
[16] | Two-arm spiral antenna/EGaIn/manual-pump | LM-filled spiral is embedded into silicone elastomer | Directivity | 6.9–13.8 | y-direction (90°) and -y-direction (270°) | 40–72 |
[56] | Transmitarray unit cell/Galinstan/manual-micropump | Unit cell with LM-filled split ring structure | Phase | 8–10 | 360° linear phase shift | - |
[41] | Dipole antenna/Galinstan/ electrocapillary actuation (ECA) | LM-filled dipole arms are enclosed in polyimide fixtures | Compound (polarization + pattern) | 1.579 | 0°, −45°, 45°, −90°, and 90° | 69–97 |
[18] | Crossed-dipole antenna/EGaIn/ electrochemically controlled capillary (ECC) | Crossed dipole with two pairs of LM-filled dipole arms | Compound (frequency + polarization) | 0.8–3 | LP (0.8–3 GHz) CP (0.89–1.63 GHz) | 41–70 |
[39] | Helical antenna/Galinstan/manual-peristaltic pump | Helical antenna with LM in flexible polymer tube | Compound (pattern + polarization) | 1.575 | CP and EP axial beams, LP semidoughnut and axial beams | 8.5, 7.6, 1.1, and 5.9 dBi |
[57] | Origami antenna/Galinstan/syringe pump | Origami with LM in zig-zag and helical structures | Compound (frequency + polarization + pattern) | 3 and 5 | LP (3 GHz) to CP (5 GHz) Directional to omnidirectional | - |
Ref | Antenna/Liquid Type | Design Approach | Reconfig. Type | Freq. Range (GHz) | Tuning Characteristics/Tuning Ratio | Gain (dBi)/ Eff. (%) |
---|---|---|---|---|---|---|
[38] | Monopole antenna/Conductive (mercury) | Monopole with capacitive coupling feed line | Frequency | 2.5–5 | ~4:1 | 1.3–3 dB (monopole) >6 dB (array) 80, 65 |
[58] | Vivaldi antenna/Conductive (ionized water) | Feed line coupled to slot line | Frequency | 3.2 and 4.5 | - | 87 11 and 10.9 dBi |
[59] | Dipole antenna/Dielectric (castor oil and ethyl acetate) | Two bent dipoles with plastic enclosure | Frequency | 1.17–1.50 0.9 to 1.44 | 25% 46% | 90–47, 92–82 |
[60] | Microfluidic microstrip patch/Dielectric (DI water) | Inserting liquid tubes between the patch and the ground plane | Frequency | 1.391–1.861 | - | >6.7 dBi 68.8–86.3 |
[61] | Dielectric resonator antenna (DRA)/Dielectric (ethyl acetate) | Container with left and right rectangular sections | Polarization | 2.4 | LHCP (16.7%), RHCP (16.3%) | >2 dBiC >70 |
[62] | Dielectric resonator antenna (DRA)/Dielectric (ethyl acetate) | DRA with inner and outer sections | Pattern | 3.75–5.37 | HEM11δ mode (outer section empty) TM01δ (outer section full) | >3 dBi >80, 50–63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu Bakar, H.; Abd Rahim, R.; Soh, P.J.; Akkaraekthalin, P. Liquid-Based Reconfigurable Antenna Technology: Recent Developments, Challenges and Future. Sensors 2021, 21, 827. https://doi.org/10.3390/s21030827
Abu Bakar H, Abd Rahim R, Soh PJ, Akkaraekthalin P. Liquid-Based Reconfigurable Antenna Technology: Recent Developments, Challenges and Future. Sensors. 2021; 21(3):827. https://doi.org/10.3390/s21030827
Chicago/Turabian StyleAbu Bakar, Habshah, Rosemizi Abd Rahim, Ping Jack Soh, and Prayoot Akkaraekthalin. 2021. "Liquid-Based Reconfigurable Antenna Technology: Recent Developments, Challenges and Future" Sensors 21, no. 3: 827. https://doi.org/10.3390/s21030827
APA StyleAbu Bakar, H., Abd Rahim, R., Soh, P. J., & Akkaraekthalin, P. (2021). Liquid-Based Reconfigurable Antenna Technology: Recent Developments, Challenges and Future. Sensors, 21(3), 827. https://doi.org/10.3390/s21030827