Deep Neural Network-Based Semantic Segmentation of Microvascular Decompression Images
Abstract
:1. Introduction
2. Related Work
3. Model
3.1. Network Backbone
3.2. Decoder Structure Optimization
4. Experiments
4.1. Dataset
4.2. Pre-Processing
4.3. Network Training
4.4. Analysis of Results
4.4.1. Analysis and Comparison of Test Data
4.4.2. Improved Module Validity Verification
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plis, S.M.; Hjelm, D.R.; Salakhutdinov, R.; Allen, E.A.; Bockholt, H.J.; Long, J.D.; Johnson, H.J.; Paulsen, J.S.; Turner, J.A.; Calhoun, V.D. Deep learning for neuroimaging: A validation study. Front. Neurosci. 2014, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Cai, W.; Wang, X.; Zhou, Y.; Feng, D.D.; Chen, M. Medical image classification with convolutional neural network. In Proceedings of the 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore, 10–12 December 2014; pp. 844–848. [Google Scholar]
- Ypsilantis, P.P.; Siddique, M.; Sohn, H.M.; Davies, A.; Cook, G.; Goh, V.; Montana, G. Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS ONE 2015, 10, e0137036. [Google Scholar] [CrossRef]
- Do, D.T.; Le, T.Q.; Le, N.Q. Using deep neural networks and biological subwords to detect protein S-sulfenylation sites. Brief. Bioinform. 2020. [Google Scholar] [CrossRef] [PubMed]
- Turaga, S.C.; Murray, J.F.; Jain, V.; Roth, F.; Helmstaedter, M.; Briggman, K.; Denk, W.; Seung, H.S. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 2010, 22, 511–538. [Google Scholar] [CrossRef] [PubMed]
- Roth, H.R.; Lu, L.; Farag, A.; Shin, H.-C.; Liu, J.; Turkbey, E.B.; Summers, R.M. Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation. In Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 556–564. [Google Scholar]
- Roth, H.R.; Lu, L.; Seff, A.; Cherry, K.M.; Hoffman, J.; Wang, S.; Liu, J.; Turkbey, E.; Summers, R.M. A new 2.5 D representation for lymph node detection using random sets of deep convolutional neural network observations. In Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2014; pp. 520–527. [Google Scholar]
- Le, N.Q.K.; Do, D.T.; Hung, T.N.K.; Lam, L.H.T.; Huynh, T.-T.; Nguyen, N.T.K. A Computational Framework Based on Ensemble Deep Neural Networks for Essential Genes Identification. Int. J. Mol. Sci. 2020, 21, 9070. [Google Scholar] [CrossRef] [PubMed]
- Koyamada, S.; Shikauchi, Y.; Nakae, K.; Koyama, M.; Ishii, S. Deep learning of fMRI big data: A novel approach to subject-transfer decoding. arXiv 2015, arXiv:1502.00093. [Google Scholar]
- Csurka, G.; Perronnin, F. An efficient approach to semantic segmentation. Int. J. Comput. Vis. 2011, 95, 198–212. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Georgiou, T.; Lew, M.S. A review of semantic segmentation using deep neural networks. Int. J. Multimed. Inf. Retr. 2018, 7, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Odstrcilik, J.; Kolar, R.; Kubena, T.; Cernosek, P.; Budai, A.; Hornegger, J.; Gazarek, J.; Svoboda, O.; Jan, J.; Angelopoulou, E. Retinal vessel segmentation by improved matched filtering: Evaluation on a new high-resolution fundus image database. IET Image Process. 2013, 7, 373–383. [Google Scholar] [CrossRef]
- Chakraborti, T.; Jha, D.K.; Chowdhury, A.S.; Jiang, X. A self-adaptive matched filter for retinal blood vessel detection. Mach. Vis. Appl. 2015, 26, 55–68. [Google Scholar] [CrossRef]
- Singh, N.P.; Srivastava, R. Retinal blood vessels segmentation by using Gumbel probability distribution function based matched filter. Comput. Methods Programs Biomed. 2016, 129, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Frangi, A.F.; Niessen, W.J.; Vincken, K.L.; Viergever, M.A. Multiscale vessel enhancement filtering. In Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 1998; pp. 130–137. [Google Scholar]
- Nguyen, U.T.; Bhuiyan, A.; Park, L.A.; Ramamohanarao, K. An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognit. 2013, 46, 703–715. [Google Scholar] [CrossRef]
- Saffarzadeh, V.M.; Osareh, A.; Shadgar, B. Vessel Segmentation in Retinal Images Using Multi-scale Line Operator and K-Means Clustering. J. Med Signals Sens. 2014, 4, 122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fisher, M.; Wang, W. Retinal vessel segmentation using multi-scale textons derived from keypoints. Comput. Med. Imaging Graph. 2015, 45, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carballal, A.; Novoa, F.J.; Fernandez-Lozano, C.; García-Guimaraes, M.; Aldama-López, G.; Calviño-Santos, R.; Vazquez-Rodriguez, J.M.; Pazos, A. Automatic multiscale vascular image segmentation algorithm for coronary angiography. Biomed. Signal Process. Control. 2018, 46, 1–9. [Google Scholar] [CrossRef]
- Khawaja, A.; Khan, T.M.; Khan, M.A.; Syed, J.N. A Multi-Scale Directional Line Detector for Retinal Vessel Segmentation. Sensors 2019, 19, 4949. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Chen, Z.; Jiang, S.; Wang, Y. Morphological Multiscale Enhancement, Fuzzy Filter and Watershed for Vascular Tree Extraction in Angiogram. J. Med Syst. 2011, 35, 811–824. [Google Scholar] [CrossRef]
- Kass, M.; Witkin, A.; Tetzopoulos, D. Active contour models. International Journal of computer vision. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, USA, 23–25 June 1998; p. 1. [Google Scholar]
- Zhao, Y.; Rada, L.; Chen, K.; Harding, S.P.; Zheng, Y. Automated Vessel Segmentation Using Infinite Perimeter Active Contour Model with Hybrid Region Information with Application to Retinal Images. IEEE Trans. Med Imaging 2015, 34, 1797–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Zhao, J.; Yang, J.; Liu, Y.; Zhao, Y.; Zheng, Y.; Xia, L.; Wang, Y. Saliency driven vasculature segmentation with infinite perimeter active contour model. Neurocomputing 2017, 259, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Devi, S.N.; Kumaravel, N. Comparison of active contour models for image segmentation in X-ray coronary angiogram images. J. Med Eng. Technol. 2008, 32, 408–418. [Google Scholar] [CrossRef]
- Tagizaheh, M.; Sadri, S.; Doosthoseini, A.M. Segmentation of coronary vessels by combining the detection of centerlines and active contour model. In Proceedings of the 2011 7th Iranian Conference on Machine Vision and Image Processing, Tehran, Iran, 16–17 November 2011; pp. 1–4. [Google Scholar]
- Wang, J.; Zhao, S.; Liu, Z.; Tian, Y.; Duan, F.; Pan, Y. An active contour model based on adaptive threshold for extraction of cerebral vascular structures. Comput. Math. Methods Med. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Brieva, J.; Gonzalez, E.; Gonzalez, F.; Bousse, A.; Bellanger, J. A level set method for vessel segmentation in coronary angiography. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 1–4 September 2005; pp. 6348–6351. [Google Scholar]
- Sum, K.W.; Cheung, P.Y. Vessel extraction under non-uniform illumination: A level set approach. IEEE Trans. Biomed. Eng. 2007, 55, 358–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Q.; Li, Q.-D.; Wang, B.; Li, Y.; Jun-Feng, Y.; Liu, K.-H.; Wu, Q. 3D vasculature segmentation using localized hybrid level-set method. Biomed. Eng. Online 2014, 13, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lázár, I.; Hajdu, A. Segmentation of retinal vessels by means of directional response vector similarity and region growing. Comput. Biol. Med. 2015, 66, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Roychowdhury, S.; Koozekanani, D.D.; Parhi, K.K. Iterative vessel segmentation of fundus images. IEEE Trans. Biomed. Eng. 2015, 62, 1738–1749. [Google Scholar] [CrossRef]
- Lara, D.S.; Faria, A.W.; Araújo, A.d.A.; Menotti, D. A semi-automatic method for segmentation of the coronary artery tree from angiography. In Proceedings of the 2009 XXII Brazilian Symposium on Computer Graphics and Image Processing, Rio De Janiero, Brazil, 11–15 October 2009; pp. 194–201. [Google Scholar]
- Shoujun, Z.; Jian, Y.; Yongtian, W.; Wufan, C. Automatic segmentation of coronary angiograms based on fuzzy inferring and probabilistic tracking. Biomed. Eng. Online 2010, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Wan, T.; Shang, X.; Yang, W.; Chen, J.; Li, D.; Qin, Z. Automated coronary artery tree segmentation in X-ray angiography using improved Hessian based enhancement and statistical region merging. Comput. Methods Programs Biomed. 2018, 157, 179–190. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Nasr-Esfahani, E.; Samavi, S.; Karimi, N.; Soroushmehr, S.R.; Ward, K.; Jafari, M.H.; Felfeliyan, B.; Nallamothu, B.; Najarian, K. Vessel extraction in X-ray angiograms using deep learning. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 643–646. [Google Scholar]
- Phellan, R.; Peixinho, A.; Falcão, A.; Forkert, N.D. Vascular segmentation in tof mra images of the brain using a deep convolutional neural network. In Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis; Springer: Cham, Switzerland, 2017; pp. 39–46. [Google Scholar]
- Mo, J.; Zhang, L. Multi-level deep supervised networks for retinal vessel segmentation. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 2181–2193. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhang, H.; Wang, Y.; Ko, S.-B. Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput. Med. Imaging Graph. 2018, 68, 1–15. [Google Scholar] [CrossRef]
- Noh, K.J.; Park, S.J.; Lee, S. Scale-space approximated convolutional neural networks for retinal vessel segmentation. Comput. Methods Programs Biomed. 2019, 178, 237–246. [Google Scholar] [CrossRef]
- Livne, M.; Rieger, J.; Aydin, O.U.; Taha, A.A.; Akay, E.M.; Kossen, T.; Sobesky, J.; Kelleher, J.D.; Hildebrand, K.; Frey, D.; et al. A U-Net Deep Learning Framework for High Performance Vessel Segmentation in Patients With Cerebrovascular Disease. Front. Neurosci. 2019, 13, 97. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient processing of deep neural networks: A tutorial and survey. Proc. IEEE 2017, 105, 2295–2329. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Hui, Z.; Wang, X.; Gao, X. Fast and accurate single image super-resolution via information distillation network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 723–731. [Google Scholar]
- Hui, Z.; Gao, X.; Yang, Y.; Wang, X. Lightweight image super-resolution with information multi-distillation network. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2024–2032. [Google Scholar]
- Liu, J.; Tang, J.; Wu, G. Residual feature distillation network for lightweight image super-resolution. arXiv 2020, arXiv:2009.11551. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154. [Google Scholar]
- Wu, H.; Zhang, J.; Huang, K.; Liang, K.; Fastfcn, Y.Y. Rethinking dilated convolution in the backbone for semantic segmentation. arXiv 2019, arXiv:1903.11816. [Google Scholar]
Number | Category Name | RGB Value | Color |
---|---|---|---|
1 | cn5 | (192, 192, 0) | |
2 | cn7 | (0, 64, 0) | |
3 | cn9 | (64, 0, 128) | |
4 | cn10 | (64, 128, 128) | |
5 | aica | (0, 0, 128) | |
6 | pica | (192, 0, 192) | |
7 | aica + cn7 | (64, 0, 0) | |
8 | pica + cn7 | (128, 0, 64) | |
9 | pv | (192, 128, 64) |
Parameters | Value | Parameter | Value |
---|---|---|---|
num clones | 2 | learning rate | 0.05 |
iterations | 41,000 | momentum | 0.9 |
atrous rates | 6, 12, 18 | weight decay | 0.00004 |
output stride | 16 | crop size | 512 × 512 |
decoder output stride | 4 | batch size | 4 |
Model | Train OS | Eval OS | MIoU% |
---|---|---|---|
DeepLabv3+ | 16 | 16 | 72.56 |
Our method | 16 | 16 | 75.73 |
Methods | MIoU | cn5 | cn7 | cn9 | cn10 | aica | pica | aica + cn7 | pica + cn7 | pv |
---|---|---|---|---|---|---|---|---|---|---|
U-Net | 73.93 | 81.81 | 71.89 | 77.56 | 81.88 | 63.47 | 73.3 | 76.54 | 87.76 | 51.17 |
PSPNet | 68.57 | 80.69 | 76.96 | 63.62 | 72.81 | 58.65 | 68.89 | 74.8 | 86.55 | 34.19 |
DeepLabv3+ | 72.56 | 81.33 | 77.87 | 65.62 | 69.58 | 68.2 | 68.52 | 75.29 | 84.6 | 62.07 |
DANet | 69.49 | 78.81 | 71.38 | 69.97 | 72.37 | 55.39 | 67.2 | 74.95 | 85.49 | 49.84 |
FastFCN | 70.21 | 78.13 | 76.18 | 74.59 | 73.83 | 57.35 | 71.92 | 76.22 | 85.0 | 38.67 |
Our method | 75.73 | 81.07 | 82.8 | 74.48 | 79.18 | 70.8 | 74.06 | 76.58 | 86.58 | 56.06 |
Encoder | Our Encoder | Decoder | Our Decoder | MIoU% |
---|---|---|---|---|
√ | √ | 74.43 | ||
√ | √ | 74.57 | ||
√ | √ | 75.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, R.; Jiang, S.; Sun, H.; Yang, Y.; Li, G. Deep Neural Network-Based Semantic Segmentation of Microvascular Decompression Images. Sensors 2021, 21, 1167. https://doi.org/10.3390/s21041167
Bai R, Jiang S, Sun H, Yang Y, Li G. Deep Neural Network-Based Semantic Segmentation of Microvascular Decompression Images. Sensors. 2021; 21(4):1167. https://doi.org/10.3390/s21041167
Chicago/Turabian StyleBai, Ruifeng, Shan Jiang, Haijiang Sun, Yifan Yang, and Guiju Li. 2021. "Deep Neural Network-Based Semantic Segmentation of Microvascular Decompression Images" Sensors 21, no. 4: 1167. https://doi.org/10.3390/s21041167
APA StyleBai, R., Jiang, S., Sun, H., Yang, Y., & Li, G. (2021). Deep Neural Network-Based Semantic Segmentation of Microvascular Decompression Images. Sensors, 21(4), 1167. https://doi.org/10.3390/s21041167