Transrectal Ultrasound and Photoacoustic Imaging Probe for Diagnosis of Prostate Cancer
Abstract
:1. Introduction
2. Transrectal Ultrasound and Photoacoustic Imaging Probe
2.1. Optical Module
2.2. Transrectal Ultrasound Array
2.3. Housing
3. Performance Evaluation and Discussion
3.1. Light-Intensity Distribution
3.2. Imaging Performance
3.3. Combined US and PA Imaging of Targets Behind the Procine Intestine
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Optical Lens Design
Appendix B. Numerical Simulation
Appendix C. Monte Carlo Simulation
References
- Center, M.M.; Jemal, A.; Lortet-Tieulent, J.; Ward, E.; Ferlay, J.; Brawley, O.; Bray, F. International variation in prostate cancer incidence and mortality rates. Eur. Urol. 2012, 61, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Sedelaar, J.P.; Van Roermund, J.G.; Van Leenders, G.L.; Hulsbergen-van de Kaa, C.A.; Wijkstra, H.; De la Rosette, J.J. Three-dimensional grayscale ultrasound: Evaluation of prostate cancer compared with benign prostatic hyperplasia. Urology 2001, 57, 914–920. [Google Scholar] [CrossRef]
- Lopez-Corona, E.; Ohori, M.; Wheeler, T.M.; Reuter, V.E.; Scardino, P.T.; Kattan, M.W.; Eastham, J.A. Prostate Cancer Diagnosed After Repeat Biopsies Have a Favorable Pathological Outcome but Similar Recurrence Rate. J. Urol. 2006, 175, 923–928. [Google Scholar] [CrossRef] [Green Version]
- Sano, F.; Terao, H.; Kawahara, T.; Miyoshi, Y.; Sasaki, T.; Noguchi, K.; Kubota, Y.; Uemura, H. Contrast-enhanced ultrasonography of the prostate: Various imaging findings that indicate prostate cancer. BJU Int. 2011, 107, 1404–1410. [Google Scholar] [CrossRef]
- Shigeno, K.; Igawa, M.; Shiina, H.; Wada, H.; Yoneda, T. The role of colour Doppler ultrasonography in detecting prostate cancer. BJU Int. 2000, 86, 229–233. [Google Scholar] [CrossRef]
- Sauvain, J.L.; Palascak, P.; Bourscheid, D.; Chabi, C.; Atassi, A.; Bremon, J.M.; Palascak, R. Value of power doppler and 3D vascular sonography as a method for diagnosis and staging of prostate cancer. Eur. Urol. 2003, 44, 21–30. [Google Scholar] [CrossRef]
- Mitterberger, M.; Horninger, W.; Aigner, F.; Pinggera, G.M.; Steppan, I.; Rehder, P.; Frauscher, F. Ultrasound of the prostate. Cancer Imaging 2010, 10, 30–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Chen, Y.Q.; Zhu, Y.K.; Yao, X.H.; Qi, J. Factors influencing the degree of enhancement of prostate cancer on contrast-enhanced transrectal ultrasonography: Correlation with biopsy and radical prostatectomy specimens. Br. J. Radiol. 2012, 85, e979–e986. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yao, J. Photoacoustic microscopy: Principles and biomedical applications. Biomed. Eng. Lett. 2018, 8, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.W.; Wang, Y.A.; Li, P.C. Laser Generated Leaky Acoustic Waves for Needle Visualization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Horiguchi, A.; Tsujita, K.; Irisawa, K.; Kasamatsu, T.; Hirota, K.; Kawaguchi, M.; Shinchi, M.; Ito, K.; Asano, T.; Shinmoto, H.; et al. A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy. Prostate 2016, 76, 307–315. [Google Scholar] [CrossRef]
- Horiguchi, A.; Shinchi, M.; Nakamura, A.; Wada, T.; Ito, K.; Asano, T.; Shinmoto, H.; Tsuda, H.; Ishihara, M. Pilot Study of Prostate Cancer Angiogenesis Imaging Using a Photoacoustic Imaging System. Urology 2017, 108, 212–219. [Google Scholar] [CrossRef]
- Kothapalli, S.R.; Sonn, G.A.; Choe, J.W.; Nikoozadeh, A.; Bhuyan, A.; Park, K.K.; Cristman, P.; Fan, R.; Moini, A.; Lee, B.C.; et al. Simultaneous transrectal ultrasound and photoacoustic human prostate imaging. Sci. Transl. Med. 2019, 11, eaav2169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Qian, H.N.; Zhao, Y.; Sun, K.; Wang, H.Q.; Liang, G.Q.; Li, F.H.; Li, Z. Relationship between age and prostate size. Asian J. Androl. 2013, 15, 116–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Chang, J.H.; Wilson, B.C.; Veilleux, I.; Bai, Y.; DaCosta, R.; Kim, K.; Ha, S.; Lee, J.G.; Kim, J.S.; et al. A prototype hand-held tri-modal instrument for in vivo ultrasound, photoacoustic, and fluorescence imaging. Rev. Sci. Instrum. 2015, 86, 034901. [Google Scholar] [CrossRef]
- Kang, J.; Chang, J.H.; Kim, S.M.; Lee, H.J.; Kim, H.; Wilson, B.C.; Song, T.K. Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: In vivo proof-of-principle and validation with nodal obstruction. Sci. Rep. 2017, 7, 45008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Li, G.; Zhu, L.; Li, C.; Cornelius, L.A.; Wang, L.V. Handheld photoacoustic probe to detect both melanoma depth and volume at high speed in vivo. J. Biophoton. 2015, 8, 961–967. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, C.; Gong, X.; Zheng, R.; Bai, Y.; Xing, M.; Du, X.; Liu, X.; Zeng, J.; Lin, R.; et al. Linear array-based real-time photoacoustic imaging system with a compact coaxial excitation handheld probe for noninvasive sentinel lymph node mapping. Biomed. Opt. Express 2018, 9, 1408–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upputuri, P.K.; Pramanik, M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: A review. J. Biomed. Opt. 2016, 22, 041006. [Google Scholar] [CrossRef]
- Moore, D.T. Ray tracing in gradient-index media. J. Opt. Soc. Am. 1975, 65, 451–455. [Google Scholar] [CrossRef]
- Hanrahan, P.; Cook, R.L.; Arvo, J.; Kirk, D.; Heckbert, P.S. An Introduction to Ray Tracing; Glassner, A.S., Ed.; Academic Press: New York, NY, USA, 1989; ISBN 978-0122861604. [Google Scholar]
- Shaikhibrahim, Z.; Lindstrot, A.; Ellinger, J.; Rogenhofer, S.; Buettner, R.; Perner, S.; Wernert, N. The peripheral zone of the prostate is more prone to tumor development than the transitional zone: Is the ETS family the key? Mol. Med. Rep. 2012, 5, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Kang, S.; Chang, J.H. Optically Transparent Focused Transducers for Combined Photoacoustic and Ultrasound Microscopy. J. Med. Biol. Eng. 2020, 40, 707–718. [Google Scholar] [CrossRef]
- Jang, J.; Chang, J.H. Design and Fabrication of a Miniaturized Convex Array for Combined Ultrasound and Photoacoustic Imaging of the Prostate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 2086–2096. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jang, J.; Chang, J.H. Oblong-Shaped-Focused Transducers for Intravascular Ultrasound Imaging. IEEE Trans. Biomed. Eng. 2017, 64, 671–680. [Google Scholar] [CrossRef]
- Kim, H.; Chang, J.H. Increased light penetration due to ultrasound-induced air bubbles in optical scattering media. Sci. Rep. 2017, 7, 16105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, C.; Kang, J.; Han, S.; Yoo, Y.; Song, T.K.; Chang, J.H. Enhancement of photoacoustic image quality by sound speed correction: Ex Vivo evaluation. Opt. Express 2012, 20, 3082–3090. [Google Scholar] [CrossRef]
- El-Gohary, S.H.; Metwally, M.K.; Eom, S.; Jeon, S.H.; Byun, K.M.; Kim, T.S. Design study on photoacoustic probe to detect prostate cancer using 3D Monte Carlo simulation and finite element method. Biomed. Eng. Lett. 2014, 4, 250–257. [Google Scholar] [CrossRef]
- Lediju Bell, M.A.; Guo, X.; Song, D.Y.; Boctor, E.M. Transurethral light delivery for prostate photoacoustic imaging. J. Biomed. Opt. 2015, 20, 036002. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, S.N.; Riis, P. Rectal Wall Thickness Measured by Ultrasound in Chronic Inflammatory Diseases of the Colon. Scand. J. Gastroenterol. 1985, 20, 109–114. [Google Scholar] [CrossRef]
- Lee, F.; Torp-Pedersen, S.; Littrup, P.J.; McLeary, R.D.; McHugh, T.A.; Smid, A.P.; Stella, P.J.; Borlaza, G.S. Hypoechoic lesions of the prostate: Clinical relevance of tumor size, digital rectal examination, and prostate-specific antigen. Radiology 1989, 170, 29–32. [Google Scholar] [CrossRef]
- Ishihara, M.; Horiguchi, A.; Shinmoto, H.; Tsuda, H.; Irisawa, K.; Wada, T.; Asano, T. Comparison of transrectal photoacoustic, Doppler, and magnetic resonance imaging for prostate cancer detection. In Proceedings of the Photons Plus Ultrasound: Imaging and Sensing, San Francisco, CA, USA, 13–18 February 2016; Volume 9708, p. 970852. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.; Kim, J.; Lee, H.J.; Chang, J.H. Transrectal Ultrasound and Photoacoustic Imaging Probe for Diagnosis of Prostate Cancer. Sensors 2021, 21, 1217. https://doi.org/10.3390/s21041217
Jang J, Kim J, Lee HJ, Chang JH. Transrectal Ultrasound and Photoacoustic Imaging Probe for Diagnosis of Prostate Cancer. Sensors. 2021; 21(4):1217. https://doi.org/10.3390/s21041217
Chicago/Turabian StyleJang, Jihun, Jinwoo Kim, Hak Jong Lee, and Jin Ho Chang. 2021. "Transrectal Ultrasound and Photoacoustic Imaging Probe for Diagnosis of Prostate Cancer" Sensors 21, no. 4: 1217. https://doi.org/10.3390/s21041217
APA StyleJang, J., Kim, J., Lee, H. J., & Chang, J. H. (2021). Transrectal Ultrasound and Photoacoustic Imaging Probe for Diagnosis of Prostate Cancer. Sensors, 21(4), 1217. https://doi.org/10.3390/s21041217