A Comparative Survey of Feature Extraction and Machine Learning Methods in Diverse Acoustic Environments
Abstract
:1. Introduction
2. Related Work
2.1. Acoustic Event Detection Algorithms
2.1.1. Audio Features Extraction Methods and Its Applications
2.1.2. Machine Learning Techniques
3. Corpora Description
3.1. Indoor Sounds
3.2. Outdoor Sounds
3.3. Soundscapes
3.4. Surveillance-Related Sounds
3.5. Bird Sounds
4. Description of Selected Audio Features Extraction Methods and Machine Learning Algorithms
4.1. Feature Extraction Techniques
4.1.1. Mel Frequency Cepstrum Coefficents (MFCC)
4.1.2. GammaTone Cepstral Coefficients (GTCC)
4.1.3. Narrow-Band Autocorrelation Function Features (NB-ACF)
- : energy of the i-th narrow band signal (5). The vector represents the power spectral response of the signal.
- : effective duration of the normalized envelope of the i-th band ACF signal. It gives information about the reverberation component contained in this band. It is calculated as the time that the function takes to decay 10dB.
- : delay of the first peak found in the i-th band ACF signal. This parameter is related to the dominant frequency contained within the i-th band signal. It can be calculated as the delay of the largest , starting from the first zero crossing (), as we can see in (6).
- : amplitude of the first peak found in the i-th band ACF signal (). The vector indicates the pitch strength at the different frequency bands. In other words, a low value of means that the dominant frequency of this band is not important within the overall signal. On the contrary, a high value of this feature represents a strong pitch in the i-th band. Both and are especially useful in auditory soundscapes and other scenarios where coexist different sound sources. This parameter can be computed as follows:
- : the autocorrelation zero crossing rate is the number of times that the ACF of the i-th band crosses the zero amplitude level (8).
4.2. Machine Learning Techniques
4.2.1. K-Nearest Neighbors (kNN)
4.2.2. Neural Networks (NN)
4.2.3. Gaussian Mixture Models (GMM)
5. Experiments
5.1. Experimental Setup
5.2. Experimental Results
5.2.1. Accuracy Results
5.2.2. Recall Results
5.2.3. Detailed Study of the Optimum Setting
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAL | Ambient Assisted Living |
ACF | Auto-Correlation Features |
AED | Audio Event Detection |
AZCR | Autocorrelation Zero Crossing Rate |
CNN | Convolutional Neural Networks |
DA | Discriminant Analysis |
DCT | Discrete Cosine Transform |
DNN | Deep Neural Networks |
EER | Equal Error Rate |
END | Environmental Noise Directive |
ERB | Equal Rectangular Bandwidth |
EU | European Union |
FE | Features Extraction |
FFT | Fast Fourier Transform |
FLD | Fisher’s Linear Discriminant |
GMM | Gaussian Mixture Model |
GP-GPU | General Purpose - Graphics Processing Unit |
GPS | Global Positioning System |
GTCC | GammaTone Cepstrum Coefficients |
HMM | Hidden Markov Models |
IoT | Internet of Things |
kNN | k-Nearest Neighbor |
LLD | Low-Level Descriptors |
MFCC | Mel Frequency Cepstrum Coefficients |
ML | Machine Learning |
NB | Narrow Band |
NB-ACF | Narrow Band Auto-Correlation Features |
NN | Neural Networks |
PWP | Perceptual Wavelet Packets |
RTN | Road Traffic Noise |
SVM | Support Vector Machines |
WASN | Wireless Acoustic Sensor Network |
References
- Davies, A.C.; Velastin, S.A. A progress review of intelligent CCTV surveillance systems. Proc. IEEE IDAACS 2005, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, A. Chicago’s video surveillance cameras: A pervasive and poorly regulated threat to our privacy. Northwest. J. Technol. Intell. Prop. 2012, 11, 9. [Google Scholar]
- Alías, F.; Alsina-Pagès, R.M. Review of Wireless Acoustic Sensor Networks for Environmental Noise Monitoring in Smart Cities. J. Sens. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Seraj, F.; Meratnia, N.; Havinga, P. Privacy-aware environmental sound classification for indoor human activity recognition. In Proceedings of the PETRA ’19: 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Island of Rhodes, Greece, 5–7 June 2019; pp. 36–44. [Google Scholar]
- Vafeiadis, A.; Votis, K.; Giakoumis, D.; Tzovaras, D.; Chen, L.; Hamzaoui, R. Audio content analysis for unobtrusive event detection in smart homes. Eng. Appl. Artif. Intell. 2020, 89, 103226. [Google Scholar] [CrossRef] [Green Version]
- Ntalampiras, S.; Potamitis, I.; Fakotakis, N. Probabilistic Novelty Detection for Acoustic Surveillance Under Real-World Conditions. IEEE Trans. Multimed. 2011, 13, 713–719. [Google Scholar] [CrossRef]
- Vacher, M.; Portet, F.; Fleury, A.; Noury, N. Challenges in the processing of audio channels for ambient assisted living. In Proceedings of the 12th IEEE International Conference on e-Health Networking, Applications and Services, Lyon, France, 1–3 July 2010; pp. 330–337. [Google Scholar]
- Rashidi, P.; Mihailidis, A. A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inform. 2012, 17, 579–590. [Google Scholar] [CrossRef]
- Bouakaz, S.; Vacher, M.; Bobillier Chaumon, M.; Aman, F.; Bekkadja, S.; Portet, F.; Guillou, E.; Rossato, S.; Desserée, E.; Traineau, P.; et al. CIRDO: Smart companion for helping elderly to live at home for longer. IRBM 2014, 35. [Google Scholar] [CrossRef] [Green Version]
- Alsina-Pagès, R.; Navarro, J.; Alías, F.; Hervás, M. HomeSound: Real-Time Audio Event Detection Based on High Performance Computing for Behaviour and Surveillance Remote Monitoring. Sensors 2017, 17, 854. [Google Scholar]
- Socoró, J.; Ribera, G.; Sevillano, X.; Alías, F. Development of an Anomalous Noise Event Detection Algorithm for dynamic road traffic noise mapping. In Proceedings of the 22nd International Congress on Sound and Vibration (ICSV22), Florence, Italy, 12–16 July 2015. [Google Scholar]
- Jeon, J.; Hong, J. Classification of urban park soundscapes through perceptions of the acoustical environments. Landsc. Urban Plan. 2015, 141, 100–111. [Google Scholar] [CrossRef]
- Chaudhary, M.; Prakash, V.; Kumari, N. Identification Vehicle Movement Detection in Forest Area using MFCC and KNN. In Proceedings of the 2018 International Conference on System Modeling & Advancement in Research Trends (SMART), Moradabad, India, 23–24 November 2018. [Google Scholar]
- Sevillano, X.; Socoró, J.; Alías, F.; Bellucci, P.; Peruzzi, L.; Simone, R.; Coppi, P.; Nencini, L.; Cerniglia, A.; Bisceglie, A.; et al. DYNAMAP—Development of low cost sensors networks for real time noise mapping. Noise Mapp. 2016, 3, 172–189. [Google Scholar] [CrossRef]
- Mydlarz, C.; Salamon, J.; Bello, J. The implementation of low-cost urban acoustic monitoring devices. Appl. Acoust. 2017, 117, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Jati, A.; Nadarajan, A.; Mundnich, K.; Narayanan, S. Characterizing dynamically varying acoustic scenes from egocentric audio recordings in workplace setting. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020. [Google Scholar]
- Chu, S.; Narayanan, S.; Kuo, C.; Mataric, M. Where am i? Scene recognition for mobile robots using audio features. In Proceedings of the IEEE International Conference on Multimedia and Expo, ICME, Toronto, ON, Canada, 9–12 July 2006; pp. 885–888. [Google Scholar]
- Ozkan, Y.; Barkana, B. Forensic Audio Analysis and Event Recognition for Smart Surveillance Systems. In Proceedings of the 2019 IEEE International Symposium on Technologies for Homeland Security (HST), Woburn, MA USA, 5–6 November 2019. [Google Scholar]
- Porter, J.H.; Nagy, E.; Kratz, T.K.; Hanson, P.; Collins, S.L.; Arzberger, P. New eyes on the world: Advanced sensors for ecology. BioScience 2009, 59, 385–397. [Google Scholar] [CrossRef]
- Stowell, D.; Wood, M.; Stylianou, Y.; Glotin, H. Bird detection in audio: A survey and a challenge. In Proceedings of the 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Salerno, Italy, 13–16 September 2016; pp. 1–6. [Google Scholar]
- Hervás, M.; Alsina-Pagès, R.; Alías, F.; Salvador, M. An FPGA-Based WASN for Remote Real-Time Monitoring of Endangered Species: A Case Study on the Birdsong Recognition of Botaurus stellaris. Sensors 2017, 17, 1331. [Google Scholar]
- Somervuo, P.; Harma, A.; Fagerlund, S. Parametric representations of bird sounds for automatic species recognition. IEEE Trans. Audio Speech Lang. Process. 2006, 14, 2252–2263. [Google Scholar] [CrossRef]
- Mermelstein, P. Distance measures for speech recognition, psychological and instrumental. In Pattern Recognition and Artificial Intelligence; Chen, C.H., Ed.; Academic Press: New York, NY, USA, 1976; pp. 374–388. [Google Scholar]
- Agrawal, D.; Sailor, H.; Soni, M.; Patil, H. Novel TEO-based Gammatone features for environmental sound classification. In Proceedings of the European Signal Processing Conf. (EUSIPCO), Kos, Greece, 28 August–2 September 2017. [Google Scholar]
- Valero, X.; Alías, F. Classification of audio scenes using Narrow-Band Autocorrelation features. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27–31 August 2012; pp. 2012–2019. [Google Scholar]
- Socoró, J.; Alías, F.; Alsina-Pagès, R. An Anomalous Noise Events Detector for Dynamic Road Traffic Noise Mapping in Real-Life Urban and Suburban Environments. Sensors 2017, 17, 2323. [Google Scholar] [CrossRef]
- Boulmaiz, A.; Messadeg, D.; Doghmane, N.; Taleb-Ahmed, A. Robust acoustic bird recognition for habitat monitoring with wireless sensor networks. Int. J. Speech Technol. 2016, 19, 631–645. [Google Scholar] [CrossRef]
- Alías, F.; Socoró, J.C.; Orga, F.; Alsina-Pagès, R.M. Characterization of A WASN-Based Urban Acoustic Dataset for the Dynamic Mapping of Road Traffic Noise. In Proceedings of the 6th ECSA—Electronic Conference on Sensors and Applications, 15–30 November 2019; Volume 5, p. 2. [Google Scholar]
- Alsina-Pagès, R.M.; Orga, F.; Alías, F.; Socoró, J.C. A WASN-Based Suburban Dataset for Anomalous Noise Event Detection on Dynamic Road-Traffic Noise Mapping. Sensors 2019, 19, 2480. [Google Scholar]
- Davis, S.; Mermelstein, P. Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Sentences. IEEE Trans. Acoust. Speech Signal. Process. 1980, 28, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Aurino, F.; Folla, M.; Gargiulo, F.; Moscato, V.; Picariello, A.; Sansone, C. One-Class SVM Based Approach for Detecting Anomalous Audio Events. In Proceedings of the 2014 International Conference on Intelligent Networking and Collaborative Systems, Salerno, Italy, 10–12 September 2014. [Google Scholar]
- Mesaros, A.; Heittola, T.; Eronen, A.; Virtanen, T. Acoustic event detection in real life recordings. In Proceedings of the 18th European Signal Processing Conference, Aalborg, Denmark, 23–27 August 2010. [Google Scholar]
- Salamon, J.; Jacoby, C.; Bello, J. A Dataset and Taxonomy for Urban Sound Research. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014. [Google Scholar]
- Ntalampiras, S. Universal background modeling for acoustic surveillance of urban traffic. Digit. Signal Process. 2014, 31, 69–78. [Google Scholar] [CrossRef]
- Sigtia, S.; Stark, A.; Krstulović, S.; Plumbley, M. Automatic environmental sound recognition: Performance versus computational cost. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 2096–2107. [Google Scholar] [CrossRef]
- Stattner, E.; Hunel, P.; Vidot, N.; Collard, M. Acoustic scheme to count bird songs with wireless sensor networks. In Proceedings of the 2011 IEEE International Symposium onWorld ofWireless, Mobile and Multimedia Networks (WoWMoM), Lucca, Italy, 20–24 June 2011. [Google Scholar]
- Ventura, T.; de Oliveira, A.; Ganchev, T.; de Figueiredo, J.; Jahn, O.; Marques, M.; Schuchmann, K. Audio parameterization with robust frame selection for improved bird identification. Expert Syst. Appl. 2015, 42, 8463–8471. [Google Scholar] [CrossRef]
- Vidaña-Vila, E.; Navarro, J.; Alsina-Pagès, R.; Ramírez, Á. A two-stage approach to automatically detect and classify woodpecker (Fam. Picidae) sounds. Appl. Acoust. 2020, 166, 107312. [Google Scholar]
- Mulimani, M.; Koolagudi, S. Locality-constrained Linear Coding based Fused Visual Features for Robust Acoustic Event Classification. In Proceedings of the Interspeech 2019, Graz, Austria, 15–19 September 2019; pp. 2558–2562. [Google Scholar]
- Aguilar-Ortega, M.; Mohíno-Erranz, I.; Utrilla-Manso, M.; García-Gómez, J.; Gil-Pita, R.; Rosa-Zurera, M. Multi-microphone acoustic events detection and classification for indoor monitoring. In Proceedings of the 2019 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 22–25 September 2019. [Google Scholar]
- Henriquez, P.; Alonso, J.; Ferrer, M.; Travieso, C. Review of automatic fault diagnosis systems using audio and vibration signals. IEEE Trans. Syst. Man Cybern. Syst. 2014, 44, 642–652. [Google Scholar] [CrossRef]
- Ganchev, T.; Jahn, O.; Marques, M.; de Figueiredo, J.; Schuchmann, K. Automated acoustic detection of Vanellus chilensis lampronotus. Expert Syst. Appl. 2015, 42, 6098–6111. [Google Scholar] [CrossRef]
- Jančovič, P.; Köküer, M. Automatic detection and recognition of tonal bird sounds in noisy environments. EURASIP J. Adv. Signal Process. 2011, 2011, 982936. [Google Scholar]
- Casals, E. Programació Paral.lela en Processadors Gràfics Per a La Separació de Fonts Sonores en L`Entorn de La Llar. La Salle. Master’s Thesis, Ramon Llull University, Barcelona, Spain, 2016. [Google Scholar]
- Collaborative. The Freesound Project. 2017. Available online: https://freesound.org/ (accessed on 10 February 2021).
- BBC. The BBC Sound Effects Library: Original Series. 2015. Available online: https://www.sound-ideas.com/Product/152/BBC-Sound-Effects-Library-Original-Series (accessed on 10 February 2021).
- Valero, X.; Alías, F. Gammatone Cepstral Coefficients: Biologically Inspired Features for Non-Speech Audio Classification. IEEE Trans. Multimed. 2012, 14, 1684–1689. [Google Scholar] [CrossRef]
- Valero, X.; Alías, F. Análisis de la señal acústica mediante coeficientes cepstrales bio-inspirados y su aplicación al reconocimiento de paisajes sonoros (spanish). In Proceedings of the ACUSTICA, Lisbon, Portugal, 12–19 September 2012. [Google Scholar]
- Valero, X.; Alías, F. Gammatone Wavelet features for Sound Classification in Surveillance Applications. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27–31 August 2012. [Google Scholar]
- Vidañ a Vila, E.; Navarro, J.; Alsina-Pagès, R. Towards Automatic Bird Detection: An Annotated and Segmented Acoustic Dataset of Seven Picidae species. Data 2017, 2, 18. [Google Scholar]
- Foundation, X.C. Xeno-Canto: Sharing Bird Sounds from around the World. 2017. Available online: https://www.xeno-canto.org/ (accessed on 15 April 2017).
- Patterson, R.; Moore, B. Auditory filters and excitation patterns as representations of frequency resolution. In Frequency Selectivity in Hear-Ing; Academic Press: Cambridge, MA, USA, 1986; pp. 123–177. [Google Scholar]
- Patterson, R.; Nimmo-Smith, I.; Holdsworth, J.; Rice, P. An Efficient Auditory Filterbank Based on the Gammatone Function. In Proceedings of the IOC Speech Group on Auditory Modelling, Malvern, UK, 14–15 December 1987; pp. 1–34. [Google Scholar]
- Patterson, R.; Holdsworth, J. A functional model of neural activity patterns and auditory images. In Advances in Speech, Hearing and Language Processing; Part B; Ainsworth, W.A., Ed.; JAI Press: London, UK, 1996; Volume 3, pp. 554–562. [Google Scholar]
- Valero, X.; Alías, F. Narrow-band autocorrelation function features for the automatic recognition of acoustic environments. J. Acoust. Soc. Am. 2013, 134, 880–890. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks and Learning Machines; Pearson-Prentice Hall: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Jaakkola, T.; Singh, R.; Mohammad, A. 6.867 Machine Learning. Fall 2006. Massachusetts Institute of Technology: MIT OpenCourseWare. 2006. Available online: https://ocw.mit.edu (accessed on 10 February 2021).
- Bilmes, J. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models; Report; International Computer Science Institute: Berkeley, CA, USA, 1998. [Google Scholar]
- Fuiji, K.; Soeta, Y.; Ando, Y. Acoustical properties of aircraft noise measured by temporal and spatial factors. J. Sound Vib. 2001, 241, 69–78. [Google Scholar] [CrossRef]
- Valero, X.; Alías, F.; Kephalopoulos, S.; Paviotti, M. Pattern recognition and separation of road noise sources by means of ACF, MFCC and probability density estimation. In Proceedings of the Euronoise Conference, Edinburgh, UK, 26–28 October 2009. [Google Scholar]
- Moore, B.; Glasberg, B. A revision of Zwicker’s loudness model. Acta Acust. 1996, 82, 335–345. [Google Scholar]
- Navarro, J.; Vidañ a-Vila, E.; Alsina-Pagès, R.M.; Hervás, M. Real-Time Distributed architecture for remote acoustic elderly monitoring in Residential-Scale ambient assisted living scenarios. Sensors 2018, 18, 2492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | File Count | Length (s) | Duration Distribution (s) |
---|---|---|---|
Breaking Glass | 30 | 139.14 | |
Rain | 10 | 452.95 | |
Slicing | 7 | 206.89 | |
Printer | 17 | 46.87 | |
Door Knocking | 15 | 101.57 | |
Pouring | 10 | 59.38 | |
Dog Barking | 15 | 194.88 | |
Frying | 12 | 607.19 | |
Talking | 8 | 542.16 | |
Boiling | 14 | 355.86 | |
Baby Cry | 4 | 225.53 | |
Total | 142 | 2932.43 |
Category | File Count | Length (s) |
---|---|---|
Dogs | 150 | 600 |
Birds | 245 | 980 |
Crickets | 300 | 1200 |
Sea Waves | 300 | 1200 |
Fountain | 242 | 968 |
Wind | 158 | 632 |
Thunderstorm | 256 | 1024 |
Applause | 172 | 688 |
Crowd | 194 | 776 |
City rumble | 238 | 952 |
Car | 200 | 800 |
Aircraft | 182 | 728 |
Train | 238 | 952 |
Machinery | 297 | 1188 |
Chimneys | 300 | 1200 |
Total | 3472 | 13,888 |
Category | File Count | Length (s) |
---|---|---|
Inside Bus | 284 | 1136 |
Inside Car | 300 | 1200 |
Inside Train | 236 | 944 |
Station | 198 | 792 |
Classroom | 200 | 800 |
Office | 288 | 1152 |
Factory | 250 | 1000 |
Stadium | 269 | 1076 |
Restaurant | 193 | 772 |
Library | 173 | 692 |
City Park | 200 | 800 |
City Traffic | 253 | 1012 |
City Market | 227 | 908 |
Countryside | 150 | 600 |
Seaside | 251 | 1004 |
Total | 3472 | 13,888 |
Category | File Count | Length (s) | Duration Distribution (s) |
---|---|---|---|
Thunders | 65 | 136.5 | |
Screams | 50 | 92.05 | |
Gunshots | 85 | 57.83 | |
Footsteps | 100 | 190 | |
Dog Barks | 90 | 35.54 | |
Voices | 80 | 168 | |
Total | 470 | 679.93 |
Category | File Count | Length (s) | Duration Distribution (s) |
---|---|---|---|
Dendrocopos major | 146 | 184.98 | |
- call | |||
Dryocopus martius | 140 | 197.5 | |
- call | |||
Dendrocopos leucotos | 146 | 128.13 | |
- call | |||
Dendrocopos major | 62 | 88.5 | |
- drumming | |||
Dendrocopos minor | 105 | 209 | |
- call | |||
Dendrocopos minor | 127 | 227.5 | |
- drumming | |||
Jynx Torquilla | 102 | 324.35 | |
- song | |||
Picus viridis | 49 | 142.5 | |
- song | |||
Dendrocopos leucotos | 50 | 119 | |
- drumming | |||
Dryocopus martius | 53 | 133 | |
- drumming | |||
Dendrocopos medius | 42 | 136.91 | |
- song | |||
Dendrocopos medius | 124 | 298.51 | |
- call | |||
Total | 1146 | 2189.88 |
Lower Frequency | 20 Hz | Linearly-spaced Filters | 14 |
Higher Frequency | 22 kHz | Log-spaced Filters | 34 |
Dataset | Class | Accuracy | Dataset | Class | Accuracy |
---|---|---|---|---|---|
Indoor | Talking | 99.52% | Outdoor | Dogs Barking | 99.64% |
Outdoor | Birds | 99.84% | Outdoor | Wind | 99.51% |
Outdoor | Rumble | 99.84% | Outdoor | Machinery | 99.91% |
Outdoor | Chimneys | 99.97% | Soundscapes | Countryside | 99.90% |
Soundscapes | Factory | 99.83% | Birds | Minor-Call | 99.71% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonet-Solà, D.; Alsina-Pagès, R.M. A Comparative Survey of Feature Extraction and Machine Learning Methods in Diverse Acoustic Environments. Sensors 2021, 21, 1274. https://doi.org/10.3390/s21041274
Bonet-Solà D, Alsina-Pagès RM. A Comparative Survey of Feature Extraction and Machine Learning Methods in Diverse Acoustic Environments. Sensors. 2021; 21(4):1274. https://doi.org/10.3390/s21041274
Chicago/Turabian StyleBonet-Solà, Daniel, and Rosa Ma Alsina-Pagès. 2021. "A Comparative Survey of Feature Extraction and Machine Learning Methods in Diverse Acoustic Environments" Sensors 21, no. 4: 1274. https://doi.org/10.3390/s21041274