DG-LoRa: Deterministic Group Acknowledgment Transmissions in LoRa Networks for Industrial IoT Applications
Abstract
:1. Introduction
2. Literature Review
3. LoRa Overview
4. DG-LoRa Design
4.1. Frame Structure
4.2. GACK Transmission Procedures
5. Resource Allocations for DG-LoRa
5.1. Problem Formulations
5.2. Resource Allocation Algorithm
Algorithm 1. Resource Allocation Algorithm for GACK Transmission |
Input: U |
Output: , , ∀r |
Initialization: ← 0, r ← 1 |
1: for t ← 1 to k |
2: if there is an idle gateway on the timeslot t |
3: Generate and compute |
4: if > then |
5: ← , ← |
6: ← , ∀i |
7: end if |
8: Repeats 3-9 until all are considered |
9: end if |
10: r ← r+1 |
11: Update U |
12:end for |
6. Performance Evaluation
6.1. Data Drop Rate Analysis
6.2. Retransmission Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cisco Annual Internet Report (2018–2023) White Paper. 2020. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 31 December 2020).
- The 3rd Generation Partnership Project. Available online: http://www.3gpp.org/ (accessed on 31 December 2020).
- Queralta, J.; Gia, T.N.; Zou, Z.; Tenhunen, H.; Westerlund, T. Comparative study of LPWAN technologies on unlicensed bands for M2M communication in the IoT: Beyond LoRa and LoRaWAN. Procedia Comput. Sci. 2019, 155, 343–350. [Google Scholar] [CrossRef]
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun. Surv. Tutor. 2017, 19, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Adelnatado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T. Understanding the Limits of LoRaWAN. IEEE Commun. Mag. 2017, 55, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Sundaram, J.; Zhao, Z. A Survey on LoRa Networking: Research Problems, Current Solutions, and Open Issues. IEEE Commun. Surv. Tutor. 2020, 22, 371–388. [Google Scholar] [CrossRef] [Green Version]
- Abeele, F.; Moerman, J.; Hoebeke, J. Scalability Analysis of Large-Scale LoRaWAN Networks in ns-3. IEEE Internet Things J. 2017, 4, 2186–2198. [Google Scholar] [CrossRef] [Green Version]
- Haxhibeqiri, J.; Abeele, F.; Moerman, I.; Hoebeke, J. LoRa Scalability: A Simulation Model Based on Interference Measurements. Sensors 2017, 17, 1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrachina-Munoz, S.; Bellalta, B.; Adame, T.; Bel, A. Multi-hop Communication in the Uplink for LPWANs. Comput. Netw. 2017, 123, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Georgiou, O.; Raza, U. Low Power Wide Area Network Analysis: Can LoRa Scale? IEEE Wireless Commun. Lett. 2017, 6, 162–165. [Google Scholar] [CrossRef] [Green Version]
- Sormin, N.; Luis, M.; Eirich, T.; Kramp, T. LoRa Specification 1.0. LoRa Alliance 2015. Available online: https://lora-alliance.org/resource_hub/lorawan-specification-v1-0/ (accessed on 31 December 2020).
- Haxhibeqiri, J.; Moerman, I.; Hoebeke, J. Low Overhead Scheduling of LoRa Transmissions for Improved Scalability. IEEE Internet Things J. 2019, 6, 3097–3109. [Google Scholar] [CrossRef] [Green Version]
- Reynders, B.; Wang, Q.; Tuset-Peiro, P.; Vilajosana, X.; Pollin, S. Improving Reliability and Scalability of LoRaWANs Through Lightweight Scheduling. IEEE Internet Things J. 2018, 5, 1830–1842. [Google Scholar] [CrossRef]
- Beltramelli, L.; Mahmood, A.; Gidlund, M. LoRa beyond ALOHA: An Investigation of Alternative Random Access Protocols. Early Access Articles. IEEE Trans. Ind. Informat. 2020. [Google Scholar] [CrossRef] [Green Version]
- To, T.; Duda, A. Simulation of LoRa in NS-3: Improving LoRa Performance with CSMA. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–7. [Google Scholar]
- Wu, W.; Li, Y.; Zhang, Y.; Wang, B.; Wang, W. Distributed Queueing-Based Random Access Protocol for LoRa Networks. IEEE Internet Things J. 2020, 7, 763–772. [Google Scholar] [CrossRef]
- Leonardi, L.; Battaglia, F.; Bello, L. RT-LoRa: A Medium Access Strategy to Support Real-Time Flows Over LoRa-Based Networks for Industrial IoT Applications. IEEE Internet Things J. 2019, 6, 10812–10823. [Google Scholar] [CrossRef]
- Zorbas, D.; Abdelfadeel, K.; Kotzanikolaou, P.; Pesch, D. TS-LoRa:Time-slotted LoRaWAN for the Industrial Internet of Things. Comput. Commun. 2020, 153, 1–10. [Google Scholar] [CrossRef]
- Abdelfadeel, K.; Zorbas, D.; Cionca, V.; Pesch, D. FREE—Fine-Grained Scheduling for Reliable and Energy-Efficient Data Collection in LoRaWAN. IEEE Internet Things J. 2019, 7, 669–683. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Jeong, W.; Choi, B. A Scheduling Algorithm for Improving Scalability of LoRaWAN. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 17–19 October 2018; pp. 1383–1388. [Google Scholar]
- Bor, M.; Roedig, U.; Voigt, T.; Alonso, J. Do LoRa Low-Power Wide-Area Networks Scale? In Proceedings of the International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), Floriana, Malta, 22–26 November 2016; pp. 59–67. [Google Scholar]
SF | Sensitivity [−dBm] | Duration [ms] |
---|---|---|
7 | −124 | 36.1 |
8 | −127 | 72.2 |
9 | −130 | 144.4 |
10 | −133 | 288.8 |
SF | Number of Gaddr Fields |
---|---|
7 | 60 |
8 | 32 |
9 | 13 |
10 | 2 |
Parameters | Values |
---|---|
Number of end devices | 500–5000 |
Number of gateways | 1–4 |
Number of subframes | 8 |
Beacon interval | 128 s |
Number of downlink timeslots | 32 |
8 | |
Frame payload | 20 bytes |
MAC protocol in UTP | unslotted ALOHA |
Bandwidth | US 902–928 MHz |
0 | |
Coding rates | 1.4 |
SFs | 7–12 |
Transmission power | 20 dBm |
127.41 dB | |
2.08 | |
40 m | |
2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Yoon, Y.S.; Oh, H.W.; Park, K.R. DG-LoRa: Deterministic Group Acknowledgment Transmissions in LoRa Networks for Industrial IoT Applications. Sensors 2021, 21, 1444. https://doi.org/10.3390/s21041444
Lee J, Yoon YS, Oh HW, Park KR. DG-LoRa: Deterministic Group Acknowledgment Transmissions in LoRa Networks for Industrial IoT Applications. Sensors. 2021; 21(4):1444. https://doi.org/10.3390/s21041444
Chicago/Turabian StyleLee, Junhee, Young Seog Yoon, Hyun Woo Oh, and Kwang Roh Park. 2021. "DG-LoRa: Deterministic Group Acknowledgment Transmissions in LoRa Networks for Industrial IoT Applications" Sensors 21, no. 4: 1444. https://doi.org/10.3390/s21041444
APA StyleLee, J., Yoon, Y. S., Oh, H. W., & Park, K. R. (2021). DG-LoRa: Deterministic Group Acknowledgment Transmissions in LoRa Networks for Industrial IoT Applications. Sensors, 21(4), 1444. https://doi.org/10.3390/s21041444