Fruit Quality Monitoring with Smart Packaging
Abstract
:1. Introduction
2. Freshness of Fruits Related to Classification, Stages, and Harvesting
3. Smart Packaging Systems for Fruit Freshness
3.1. Importance of Smart Packaging and Its Relationship with Freshness Sensors
3.2. Intelligent Systems in Fruit Packaging
3.2.1. Direct Freshness
3.2.2. Indirect Freshness
3.3. Intelligent Packaging System in Container
3.4. Active Systems in Fruit Packaging
4. Challenges and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ishangulyyev, R.; Kim, S.; Lee, S. Understanding Food Loss and Waste—Why Are We Losing and Wasting Food? Foods 2019, 8, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicoletti, M.; Serrone, P. Del Intelligent and Smart Packaging. In Future Foods; InTech: London, UK, 2017. [Google Scholar]
- Morone, P.; Koutinas, A.; Gathergood, N.; Arshadi, M.; Matharu, A. Food waste: Challenges and opportunities for enhancing the emerging bio-economy. J. Clean. Prod. 2019, 221, 10–16. [Google Scholar] [CrossRef]
- Mohebi, E.; Marquez, L. Intelligent packaging in meat industry: An overview of existing solutions. J. Food Sci. Technol. 2015, 52, 3947–3964. [Google Scholar] [CrossRef]
- Slavin, J.L.; Loyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Top 3 Consumer Demands Driving Produce Packaging Trends. Available online: https://crawfordpackaging.com/product-packaging/top-three-consumer-demands-driving-produce-packaging-trends (accessed on 6 December 2020).
- The Maryland–National Capital Park and Planning Commission. Reduce, Recover, Recycle—Food Waste in Prince George’s County, MD; The Maryland–National Capital Park and Planning Commission: Adelphi, MD, USA, April 2019. Available online: http://mncppcapps.org/planning/publications/PDFs/371/FoodWaste2019.pdf (accessed on 6 December 2020).
- Food Safety Education. Available online: https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education (accessed on 6 December 2020).
- Kuswandi, B. Freshness Sensors for Food Packaging. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–11. ISBN 9780081005965. [Google Scholar]
- Alam, A.U.; Clyne, D.; Jin, H.; Hu, N.-X.; Deen, M.J. Fully Integrated, Simple, and Low-Cost Electrochemical Sensor Array for in Situ Water Quality Monitoring. ACS Sens. 2020, 5, 412–422. [Google Scholar] [CrossRef]
- Alam, A.U.; Howlader, M.M.R.; Hu, N.-X.; Deen, M.J. Electrochemical sensing of lead in drinking water using β-cyclodextrin-modified MWCNTs. Sens. Actuators B Chem. 2019, 296, 126632. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Alam, A.U.; Pan, S.; Howlader, M.M.R.; Ghosh, R.; Hu, N.-X.; Jin, H.; Dong, S.; Chen, C.-H.; Deen, M.J. Integrated water quality monitoring system with pH, free chlorine, and temperature sensors. Sens. Actuators B Chem. 2018, 255, 781–790. [Google Scholar] [CrossRef]
- Alam, A.U.; Qin, Y.; Howlader, M.M.R.; Hu, N.-X.; Deen, M.J. Electrochemical sensing of acetaminophen using multi-walled carbon nanotube and β-cyclodextrin. Sens. Actuators B Chem. 2018, 254, 896–909. [Google Scholar] [CrossRef]
- Beaudry, R.M. Effect of O2 and CO2 partial pressure on selected phenomena affecting fruit and vegetable quality. Postharvest Biol. Technol. 1999, 15, 293–303. [Google Scholar] [CrossRef]
- Li, Z.G.; Liu, Y.; Dong, J.G.; Xu, R.-J.; Zhu, M.-Z. Effect of low oxygen and high carbon dioxide on the levels of ethylene and 1-aminocyclopropane-1-carboxylic acid in ripening apple fruits. J. Plant Growth Regul. 1983, 2, 81–87. [Google Scholar] [CrossRef]
- Shirazi, A.; Cameron, A.C. Controlling Relative Humidity in Modified Atmosphere Packages of Tomato Fruit. HortScience 1992, 27, 336–339. [Google Scholar] [CrossRef] [Green Version]
- Mehyar, G.F.; Han, J.H. Active Packaging for Fresh-Cut Fruits and Vegetables. In Modified Atmosphere Packaging for Fresh-Cut Fruits and Vegetables; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 267–283. [Google Scholar]
- Alam, A.U.; Deen, M.J. Bisphenol A Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes. Anal. Chem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Li, K. Physiology and Classification of Fruits. In Handbook of Fruits and Fruit Processing; Wiley-Blackwell: Oxford, UK, 2012; pp. 1–12. [Google Scholar]
- Vendrell, M.; Domínguez-Puigjaner, E.; Llop-Tous, I. Climacteric Versus Non-Climacteric Physiology. Acta Hortic. 2001, 345–349. [Google Scholar] [CrossRef]
- Singh, V.; Zaman, P.; Meher, J. Postharvest Technology of Fruits and Vegetables. In Fruit and Vegetables; Blackwell Publishing Ltd: Oxford, UK, 2007; Volume 2, pp. 115–369. [Google Scholar]
- Prasad, K.; Jacob, S.; Siddiqui, M.W. Fruit Maturity, Harvesting, and Quality Standards. In Preharvest Modulation of Postharvest Fruit and Vegetable Quality; Elsevier: Amsterdam, The Netherlands, 2018; pp. 41–69. [Google Scholar]
- Handling of Fresh Fruits, Vegetables and Root Crops—A Training Manual for Grenada. Available online: http://www.fao.org/3/a-au186e.pdf (accessed on 6 December 2020).
- Watson, J.A.; Treadwell, D.; Sargent, S.A.; Brecht, J.K.; Pelletier, W. Postharvest Storage, Packaging and Handling of Specialty Crops: A Guide for Florida Small Farm Producers, Document HS1270. 2016. Available online: https://edis.ifas.ufl.edu/hs1270 (accessed on 6 December 2020).
- Kader, A.A. The Role of Post-Harvest Management in Assuring the Quality and Safety of Horticultural Produce. Available online: http://www.fao.org/3/y5431e/y5431e00.htm (accessed on 6 December 2020).
- ±2% Accurate Humidity Sensing Reference Design Supporting Robust 2 m Wire Communication. Available online: https://www.ti.com/tool/TIDA-00972 (accessed on 6 December 2020).
- Mahajan, P.V.; Caleb, O.J.; Singh, Z.; Watkins, C.B.; Geyer, M. Postharvest treatments of fresh produce. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372. [Google Scholar] [CrossRef] [Green Version]
- Kuswandi, B.; Wicaksono, Y.; Jayus; Abdullah, A.; Heng, L.Y.; Ahmad, M. Smart packaging: Sensors for monitoring of food quality and safety. Sens. Instrum. Food Qual. Saf. 2011, 5, 137–146. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Domokos-Szabolcsy, É.; Abdalla, N.A.; Taha, H.S.; Fári, M. Postharvest Management of Fruits and Vegetables Storage. In Sustainable Agriculture Reviews Vol. 15; Springer: Berlin/Heidelberg, Germany, 2015; pp. 65–152. [Google Scholar]
- Brodwin, E. Fresh Fruits and Vegetables Are a Scam if You Don’t Consider One Thing. Available online: https://www.businessinsider.in/fresh-fruits-and-vegetables-are-a-scam-if-you-dont-consider-one-thing/articleshow/58245793.cms (accessed on 6 December 2020).
- What Is “Freezer Burn?”. Available online: https://www.loc.gov/everyday-mysteries/item/what-is-freezer-burn (accessed on 6 December 2020).
- Rickman, J.C.; Barrett, D.M.; Bruhn, C.M. Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. J. Sci. Food Agric. 2007, 87, 930–944. [Google Scholar] [CrossRef]
- Fresh Fruits & Vegetables Market Business Analysis by Latest Trends 2020. Global Industry Growth Factors, CAGR Status, Leading Key Players Update, Regional Economy, Development Plans and Forecast to 2025. Available online: https://www.marketwatch.com/press-release/fresh-fruits-vegetables-market-business-analysis-by-latest-trends-2020-global-industry-growth-factors-cagr-status-leading-key-players-update-regional-economy-development-plans-and-forecast-to-2025-2020-11-10 (accessed on 6 December 2020).
- Storage Temperatures and Procedures. Available online: https://opentextbc.ca/foodsafety/chapter/storage-temperatures-and-procedures/ (accessed on 6 December 2020).
- Fuertes, G.; Soto, I.; Carrasco, R.; Vargas, M.; Sabattin, J.; Lagos, C. Intelligent Packaging Systems: Sensors and Nanosensors to Monitor Food Quality and Safety. J. Sens. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Welcome to the Future: Smart Packaging—PreScouter—Custom Intelligence from a Global Network of Experts. Available online: https://www.prescouter.com/2017/03/smart-packaging/ (accessed on 6 December 2020).
- Beshai, H.; Sarabha, G.K.; Rathi, P.; Alam, A.U.; Jamal Deen, M. Freshness monitoring of packaged vegetables. Appl. Sci. 2020, 10, 7937. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yang, Y.J.; Kim, J.S.; Choi, D.S.; Park, S.H.; Jin, S.Y.; Park, J.S. Non-destructive monitoring of apple ripeness using an aldehyde sensitive colorimetric sensor. Food Chem. 2018, 267, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Vo, E.; Murray, D.; Scott, T.; Atttar, A. Development of a novel colorimetric indicator pad for detecting aldehydes. Talanta 2007, 73, 87–94. [Google Scholar] [CrossRef]
- Mustafa, F.; Andreescu, S. Chemical and biological sensors for food-quality monitoring and smart packaging. Foods 2018, 7, 168. [Google Scholar] [CrossRef] [Green Version]
- Boerman, J.K.; Bauersfeld, M.L.; Schmitt, K.; Wöllenstein, J. Detection of Gaseous Ethanol by the Use of Ambient Temperature Platinum Catalyst. Procedia Eng. 2016, 168, 201–205. [Google Scholar] [CrossRef]
- Hu, L.-Y.; Hu, S.-L.; Wu, J.; Li, Y.-H.; Zheng, J.-L.; Wei, Z.-J.; Liu, J.; Wang, H.-L.; Liu, Y.-S.; Zhang, H. Hydrogen Sulfide Prolongs Postharvest Shelf Life of Strawberry and Plays an Antioxidative Role in Fruits. J. Agric. Food Chem. 2012, 60, 8684–8693. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Nelson, S.O.; Trabelsi, S.; Kays, S.J. 10–1800-MHz dielectric properties of fresh apples during storage. J. Food Eng. 2007, 83, 562–569. [Google Scholar] [CrossRef]
- Park, H.J.; Yoon, J.H.; Lee, K.G.; Choi, B.G. Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays. Nano Converg. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- De Almeida Teixeira, G.H.; Santos, L.O.; Cunha Júnior, L.C.; Durigan, J.F. Effect of carbon dioxide (CO2) and oxygen (O2) levels on quality of ‘Palmer’ mangoes under controlled atmosphere storage. J. Food Sci. Technol. 2018, 55, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Musto, C.J.; Suslick, K.S. A Simple and Highly Sensitive Colorimetric Detection Method for Gaseous Formaldehyde. J. Am. Chem. Soc. 2010, 132, 4046–4047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- RipeSense. Available online: https://product.statnano.com/product/6730/ripesense (accessed on 6 December 2020).
- Gómez, A.H.; Hu, G.; Wang, J.; Pereira, A.G. Evaluation of tomato maturity by electronic nose. Comput. Electron. Agric. 2006, 54, 44–52. [Google Scholar] [CrossRef]
- Kuswandi, B.; Maryska, C.; Jayus; Abdullah, A.; Heng, L.Y. Real time on-package freshness indicator for guavas packaging. J. Food Meas. Charact. 2013, 7, 29–39. [Google Scholar] [CrossRef]
- Kuswandi, B.; Kinanti, D.P.; Jayus; Abdullah, A.; Heng, L.Y. Simple and Low-cost freshness indicator for strawberries packaging. Acta Manila Ser. A 2013, 61, 147–159. [Google Scholar]
- Matindoust, S.; Baghaei-Nejad, M.; Shahrokh Abadi, M.H.; Zou, Z.; Zheng, L.-R. Food quality and safety monitoring using gas sensor array in intelligent packaging. Sens. Rev. 2016, 36, 169–183. [Google Scholar] [CrossRef]
- Opara, U.L.; Caleb, O.J.; Belay, Z.A. Modified atmosphere packaging for food preservation. In Food Quality and Shelf Life; Elsevier: Amsterdam, The Netherlands, 2019; pp. 235–259. [Google Scholar]
- Fagundes, C.; Carciofi, B.A.M.; Monteiro, A.R. Estimate of respiration rate and physicochemical changes of fresh-cut apples stored under different temperatures. Food Sci. Technol. 2013, 33, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Beaudry, R. MAP as a basis for active packaging. In Intelligent and Active Packaging for Fruits and Vegetables; CRC Press: Boca Raton, FL, USA, 2007; pp. 31–55. [Google Scholar]
- Ageless Eye, Oxygen Indicator. Available online: http://www.mgc.co.jp/eng/products/abc/ageless/eye.html (accessed on 11 December 2020).
- Realini, C.E.; Marcos, B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014, 98, 404–419. [Google Scholar] [CrossRef] [Green Version]
- Shillingford, C.; Russell, C.W.; Burgess, I.B.; Aizenberg, J. Bioinspired Artificial Melanosomes as Colorimetric Indicators of Oxygen Exposure. ACS Appl. Mater. Interfaces 2016, 8, 4314–4317. [Google Scholar] [CrossRef]
- Ahvenainen, R.; Hurme, E. Active and smart packaging for meeting consumer demands for quality and safety. Food Addit. Contam. 1997, 14, 753–763. [Google Scholar] [CrossRef]
- Balderson, S.N.; Whitewood, R.J. Gas Indicator for a Package. U.S. Patent 5,439,648, 8 August 1995. [Google Scholar]
- Mills, A. Oxygen indicators and intelligent inks for packaging food. Chem. Soc. Rev. 2005, 34, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Van Pelt, A.E.; Quiñones, B.; Lofgren, H.L.; Bartz, F.E.; Newman, K.L.; Leon, J.S. Low Prevalence of Human Pathogens on Fresh Produce on Farms and in Packing Facilities: A Systematic Review. Front. Public Health 2018, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, F.; Andreescu, S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv. 2020, 10, 19309–19336. [Google Scholar] [CrossRef]
- Mattila, T.; Tawast, J.; Ahvenainen, R. New possibilities for quality control of aseptic packages: Microbiological spoilage and seal defect detection using head-space indicators. Leb. Technol. 1990, 23, 246–251. [Google Scholar]
- Retama, J.R.; Mecerreyes, D.; Lopez-Ruiz, B.; Lopez-Cabarcos, E. Synthesis and characterization of semiconducting polypyrrole/polyacrylamide microparticles with GOx for biosensor applications. Colloids Surfaces A Physicochem. Eng. Asp. 2005, 270–271, 239–244. [Google Scholar] [CrossRef]
- Ahuja, T.; Mir, I.; Kumar, D. Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 2007, 28, 791–805. [Google Scholar] [CrossRef] [PubMed]
- Arshak, K.; Adley, C.; Moore, E.; Cunniffe, C.; Campion, M.; Harris, J. Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sens. Actuators B Chem. 2007, 126, 226–231. [Google Scholar] [CrossRef]
- DeCicco, B.T.; Keeven, J.K. Detection System for Microbial Contamination in Health-Care Products. U.S. Patent 5,443,987, 22 August 1995. [Google Scholar]
- Kress-Rogers, E.; Brimelow, C.J.B. Instrumentation and Sensors for the Food Industry, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2001; ISBN 9781855736481. [Google Scholar]
- Terry, L.A.; White, S.F.; Tigwell, L.J. The Application of Biosensors to Fresh Produce and the Wider Food Industry. J. Agric. Food Chem. 2005, 53, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- SIRA Technologies Food Sentinel System. Available online: https://www.adazonusa.com/blog/barcode-industry/sira-technologies-food-sentinel-system (accessed on 13 December 2020).
- Active Packaging and Intelligent Packaging for Fruits and Vegetables. Available online: https://www.ukessays.com/essays/environmental-studies/active-packaging-and-intelligent-packaging-for-fruits-and-vegetables.php?vref=1 (accessed on 31 January 2021).
- How Does an NDIR CO2 Sensor Work? Available online: https://www.co2meter.com/blogs/news/6010192-how-does-an-ndir-co2-sensor-work (accessed on 6 December 2020).
- Esser, B.; Schnorr, J.M.; Swager, T.M. Selective Detection of Ethylene Gas Using Carbon Nanotube-based Devices: Utility in Determination of Fruit Ripeness. Angew. Chem. Int. Ed. 2012, 51, 5752–5756. [Google Scholar] [CrossRef] [PubMed]
- Zevenbergen, M.A.G.; Wouters, D.; Dam, V.A.T.; Brongersma, S.H.; Crego-Calama, M. Electrochemical sensing of ethylene employing a thin ionic-liquid layer. Anal. Chem. 2011, 83, 6300–6307. [Google Scholar] [CrossRef]
- Ma, L.; Wang, L.; Chen, R.; Chang, K.; Wang, S.; Hu, X.; Sun, X.; Lu, Z.; Sun, H.; Guo, Q.; et al. A low cost compact measurement system constructed using a smart electrochemical sensor for the real-time discrimination of fruit ripening. Sensors 2016, 16, 501. [Google Scholar] [CrossRef] [Green Version]
- Cristescu, S.M.; Mandon, J.; Arslanov, D.; De Pessemier, J.; Hermans, C.; Harren, F.J.M. Current methods for detecting ethylene in plants. Ann. Bot. 2013, 111, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Maschietti, M. Time-Temperature Indicators for Perishable Products. Recent Pat. Eng. 2010, 4, 129–144. [Google Scholar] [CrossRef]
- 3MTM MonitorMarkTM Time Temperature Indicators. Available online: https://www.3m.com/3M/en_US/company-us/all-3m-products/~/MONMARK-3M-MonitorMark-Time-Temperature-Indicators/?N=5002385+3293785721&rt=rud (accessed on 6 December 2020).
- How RFID Works. Available online: https://electronics.howstuffworks.com/gadgets/high-tech-gadgets/rfid.htm (accessed on 6 December 2020).
- Active RFID Vs. Passive RFID: Which Differences? Available online: https://elainnovation.com/active-rfid-vs-passive-rfid-which-differences.html (accessed on 6 December 2020).
- Badia-Melis, R.; Ruiz-Garcia, L.; Garcia-Hierro, J.; Robla Villalba, J.I. Refrigerated fruit storage monitoring combining two different wireless sensing technologies: RFID and WSN. Sensors 2015, 15, 4781. [Google Scholar] [CrossRef] [Green Version]
- Smart Packaging—A New Use for RFID Tags. Available online: https://butlertechnologies.com/smart-packaging-new-use-rfid-tags/ (accessed on 6 December 2020).
- Vanderroost, M.; Ragaert, P.; Devlieghere, F.; De Meulenaer, B. Intelligent food packaging: The next generation. Trends Food Sci. Technol. 2014, 39, 47–62. [Google Scholar] [CrossRef]
- Tang, X.; Tan, C.; Chen, A.; Li, Z.; Shuai, R. Design and implementation of temperature and humidity monitoring system for small cold storage of fruit and vegetable based on Arduino. J. Phys. Conf. Ser. 2020, 1601. [Google Scholar] [CrossRef]
- Jedermann, R.; Praeger, U.; Geyer, M.; Lang, W. Remote quality monitoring in the banana chain. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372. [Google Scholar] [CrossRef]
- FreshView. Available online: https://www.freshview.com.au/page/sensor_ec_co2 (accessed on 6 December 2020).
- Dinh, T.V.; Choi, I.Y.; Son, Y.S.; Kim, J.C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B Chem. 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Bleecker, A.B.; Kende, H. Ethylene: A Gaseous Signal Molecule in Plants. Annu. Rev. Cell Dev. Biol. 2000, 16, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente, J.; Almeida, R.; Kooistra, L. A Comprehensive Study of the Potential Application of Flying Ethylene-Sensitive Sensors for Ripeness Detection in Apple Orchards. Sensors 2019, 19, 372. [Google Scholar] [CrossRef] [Green Version]
- Respiration and Ethylene and their Relationship to Postharvest Handling. Available online: https://eorganic.org/node/2671 (accessed on 6 December 2020).
- Young, R.E. Effect of Ionizing Radiation on Respiration and Ethylene Production of Avocado Fruit. Nature 1965, 205, 1113–1114. [Google Scholar] [CrossRef]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I.R. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Front. Plant. Sci. 2017, 8, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Theologis, A. One rotten apple spoils the whole bushel: The role of ethylene in fruit ripening. Cell 1992, 70, 181–184. [Google Scholar] [CrossRef]
- Vermeiren, L.; Devlieghere, F.; van Beest, M.; de Kruijf, N.; Debevere, J. Developments in the active packaging of foods. Trends Food Sci. Technol. 1999, 10, 77–86. [Google Scholar] [CrossRef]
- Weber, W.; Luzi, S.; Karlsson, M.; Fussenegger, M. A novel hybrid dual-channel catalytic-biological sensor system for assessment of fruit quality. J. Biotechnol. 2009, 139, 314–317. [Google Scholar] [CrossRef]
- Schaefer, D.; Cheung, W.M. Smart Packaging: Opportunities and Challenges. Procedia CIRP 2018, 72, 1022–1027. [Google Scholar] [CrossRef]
- Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biji, K.B.; Ravishankar, C.N.; Mohan, C.O.; Srinivasa Gopal, T.K. Smart packaging systems for food applications: A review. J. Food Sci. Technol. 2015, 52, 6125–6135. [Google Scholar] [CrossRef] [PubMed]
Pathogens | Fruits | Median (Range) | Sample Country |
---|---|---|---|
Escherichia coli O157:H7 | Apple Cantaloupe Fruit (not articulated) Peach Raspberry | 0 (0) 1.7 (0–40.0) 0 (0–4.00) 2.5 (0–10.0) 0 (0–40.0) | United States, Mexico, Germany, South Africa, United States |
Verotoxin-producing E. coli | Citrus | 0 (0) | Japan, United States |
Pathogenic E. coli | Kiwifruit | 0.50 (0–3.9) | China |
Salmonella | Apple Cantaloupe Citrus Fruit (not articulated) Kiwifruit Peach Raspberry Strawberry | 0 (0) 1.7 (0–40.0) 0 (0) 0 (0–4.00) 0.50 (0–3.9) 2.5 (0–10.0) 0 (0–40.0) 0 (0–30.0) | United States Mexico, Japan, Germany, South Africa, China, Poland, Poland, Spain |
Listeria | Blackberry Blueberry Cantaloupe Fruit (not articulated) Peach Raspberry Strawberry | 0 0 1.7 (0–40.0) 0 (0–4.00) 2.5 (0–10.0) 0 (0–40.0) 0 (0–30.0) | Poland, Mexico, United States, Germany, South Africa, Spain |
Staphylococcus aureus | Kiwifruit | 0.50 (0–3.9) | China |
Norovirus | Raspberry | 0 (0–40.0) | Poland |
Freshness Parameter | Smart Systems/Sensor | Main Components | Response | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|---|
Spoilage | pH chemical sensors |
|
|
|
| [50,71] |
Ripeness | Aromas sensors, e-noses sensors, pH chemical sensors |
|
|
|
| [48,50,71] |
Leak | O2 sensors, CO2 sensors |
|
|
|
| [60,72] |
Microbial | Microbial metabolites based, Gas detection based, Optical based biosensors |
|
|
|
| [67,68,69] |
Ethylene | Chemoresistance sensors, Electrochemical sensors |
|
|
|
| [73,74,75,76] |
Freshness Parameter | Smart System/Sensor | Main Components | Response | Advantages | Disadvantages | Reference |
---|---|---|---|---|---|---|
Humidity | Capacitive sensors |
|
|
|
| [26] |
Time-Temperature | Polymeric based, Photochemical based, Microbial based, Diffusion based, Electronic based, Enzymatic based |
|
|
|
| [37] |
Technology | Purpose | Advantages | Disadvantages |
---|---|---|---|
Electrochemical Ethylene Sensor |
|
|
|
NDIR |
|
|
|
Capacitive Humidity Sensor |
|
|
|
Indicators (TTI, Freshness, Integrity) |
|
|
|
RFID |
|
|
|
Smart Packaging System | Sensors Type | Trade Name (Manufacturer) |
---|---|---|
Intelligent packaging systems | Integrity indicator (leak) | O2 Sense TM (Freshpoint Lab) Novas® (Insignia Technologies Ltd.) Ageless Eye®) (Mitsubishi Gas Chemical Inc.) Timestrip® (Timestrip Ltd.) Novas® (Insignia Technologies Ltd.) |
Freshness | Freshtag® (COX Technologies) Sensorq® (DSM NVAnd Food Quality Sensor International) | |
Temperature | Timestrip® PLUS Duo (Timestrip UK Ltd.) | |
Time-temperature | Timestrip Complete® (Timestrip UK Ltd.) Monitormarktm (3MTM, Minnesota) Fresh-Check® (Temptime Corp) Onvutm (Ciba Specialty Chemicals and Freshpoint) Checkpoint® (Vitsab) Cook-Chex (Pymah Corp) Colour-Therm (Colour Therm) Thermax (Thermographic Measurements Ltd.) | |
RFID | Easy2log® (CAEN RFID Srl) Intelligent Box Mondi Plc CS8304 (Convergence Systems Ltd.) Temptrip (Temptrip LLC) | |
Active packaging systems | Oxygen scavenger | Ageless (Mitsubishi Gas Chemical Co. Ltd., Japan) Freshilizer (Toppan Printing Co. Ltd., Japan) Freshmax, Freshpax, Fresh Pack (Multisorb Technologies, USA) Oxyguard (Toyo Seikan Kaisha Ltd., Japan) Zero2 (Food Science Australia, Australia) Bioka (Bioka Ltd., Finland) |
Moisture absorber | Dri-Loc® (Sealed Air Corporation, USA) Tenderpac® (SEALPAC, Germany) | |
Antimicrobial packaging | Biomaster® (Addmaster Limited, USA) Agion® (Life Materials Technology Limited, USA) | |
Ethylene scavenger | Neupalon (Sekisui Jushi Ltd., Japan) Peakfresh (Peakfresh Products Ltd., Australia) Evert-Fresh (Evert-Fresh Corporation, USA) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, A.U.; Rathi, P.; Beshai, H.; Sarabha, G.K.; Deen, M.J. Fruit Quality Monitoring with Smart Packaging. Sensors 2021, 21, 1509. https://doi.org/10.3390/s21041509
Alam AU, Rathi P, Beshai H, Sarabha GK, Deen MJ. Fruit Quality Monitoring with Smart Packaging. Sensors. 2021; 21(4):1509. https://doi.org/10.3390/s21041509
Chicago/Turabian StyleAlam, Arif U., Pranali Rathi, Heba Beshai, Gursimran K. Sarabha, and M. Jamal Deen. 2021. "Fruit Quality Monitoring with Smart Packaging" Sensors 21, no. 4: 1509. https://doi.org/10.3390/s21041509
APA StyleAlam, A. U., Rathi, P., Beshai, H., Sarabha, G. K., & Deen, M. J. (2021). Fruit Quality Monitoring with Smart Packaging. Sensors, 21(4), 1509. https://doi.org/10.3390/s21041509