Time Distribution of Strong Seismic Events in the Fore-Sudetic Monocline in Context of Signals Registered by Water-Tube Gauges in Książ Geodynamic Laboratory
Abstract
:1. Assumption about a Homogeneous Large-Scale Field of Tectonic Forces in the Central Europe
2. Natural Conditions for Registration of Geophysical Signals in the Książ Geodynamic Laboratory
3. The Tectonic Signals Registered by Instruments Installed in Książ Underground Laboratory
3.1. Tectonic Activity Function (TAF) of the Świebodzice Depression
3.2. Exsamples of the Strongest Seismic Events in the FSM and Derivatives of Tectonic Activity Functions of the ŚU in the Years 2013–2017
3.3. Definitions of the Rules of Deformation of the Świebodzice Depression Which Are Preciding the Seismic Activity of the Fore-Sudetic Monocline
4. Fundamental Principles Which Must Be Satisfy before Earthquakes and Precedents Registered during the Seismic Events
- VTAF of four measure channels must pass zero before earthquake,
- Last zero pass of VTAF ought to be executed no late than ca. hundred hours before seismic event,
- At the moment of the seismic shock at least one channel—VTAF value, ought to be focused around zero, i.e., in the range of −22,000 to 22,000 μm/h.
- Year 2013 Figure 7A,B
- Year 2014 Figure 8A,B
- Year 2015 Figure 9A,B
- Year 2016 Figure 10A,B
- Year 2017 Figure 11A,B
5. The Seismic Events in Contexts of VTAFs and Precedents Distribution
6. Discussion
7. Conclusions
- Process of tectonic deformation of ŚU consist of two alternating epochs, namely periods of high velocities of deformation as well as periods of low velocities of deformation. During the periods of low- velocities of deformation, the VTAF cross zero level and vectors of deformations change their turn (Figure 5). At this time, we should expect that took place the change of turn of the field of tectonic forces which is the reason of velocity field variations.
- Moment of the change of turn of the field of tectonic forces results in a temporary stop of deformation of the orogen for several to several tens of hours (Figure 5). The temporary stop of the orogen deformation follow the final revers of direction of deformation and passage of the orogen through the state of extension.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aurelio, M.A. GPS velocities in Mindanao Island. J. Geol. Soc. Philipp. 2001, 56, 214–224. [Google Scholar]
- Argus, D.F.; Gordon, R.G. Current Sierra Nevada-North America motion from very long baseline interferometry: Implications for the kinematics of the western United States. Geology 1991, 19, 1085–1088. [Google Scholar] [CrossRef]
- Antonelis, K.; Johnson, D.J.; Miller, M.M.; Palmer, R. GPS determination of current Pacific–North American plate motion. Geology 1999, 27, 299–302. [Google Scholar] [CrossRef]
- Avallone, A.; Briole, P.; Agatza-Balodimou, A.M.; Billiris, H.; Charade, O.; Mitsakaki, C.; Nercessian, A.; Papazissi, K.; Paradissis, D.; Veis, G. Analysis of eleven years of deformation measured by GPS in the Corinth Rift Laboratory area. C. R. Geosci. 2004, 336, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Bacolcol, T.; Barrier, E.; Duquesnoy, T.; Aguilar, A.; Jorgio, R.; de la Cruz, R.; Lasala, M. GPS constraints on Philippine Fault slip rate in Masbate Island, central Philippines. J. Geol. Soc. Philipp. 2005, 60, 1–7. [Google Scholar]
- Apel, E.V.; Bürgmann, R.; Steblov, G.; Vasilenko, N.; King, R.; Prytkov, A. Independent active microplate tectonics of northeast Asia from GPS velocities and block modeling. Geophys. Res. Lett. 2006, 33, L11303. [Google Scholar] [CrossRef]
- Almuselmani, B.; Teferle, F.; Bingley, R.M.; Moore, T. New estimates of present-day Arabia plate motion and deformation from a dense GPS network in Saudi Arabia. In AGU Fall Meeting Abstracts; The American Geophysical Union: Washington, DC, USA, 2008; p. G34A-02. [Google Scholar]
- Al Tarazi, E.; Rajab, J.A.; Gomez, F.; Cochran, W.; Jaafar, R.; Ferry, M. GPS measurements of near-field deformation along the southern Dead Sea Fault System. Geochem. Geophys. Geosyst. 2011, 12, Q12021. [Google Scholar] [CrossRef] [Green Version]
- Alvarado, A.; Audin, L.; Nocquet, J.M.; Lagreulet, S.; Segovia, M.; Font, Y.; Lamarque, G.; Yepes, H.; Mothes, P.; Rolandone, F.; et al. Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity. Tectonics 2014, 33, 67–83. [Google Scholar] [CrossRef]
- Altamimi, Z.; Collilieux, X.; Métivier, L. ITRF2008: An improved solution of the international terrestrial reference frame. J. Geod. 2011, 85, 457–473. [Google Scholar] [CrossRef] [Green Version]
- Altamimi, Z.; Métivier, L.; Collilieux, X. ITRF2008 Plate Motion Model. J. Geophys. Res. 2012, 117, B07402. [Google Scholar] [CrossRef]
- Bloßfeld, M.; Seitz, M.; Angermann, D.; Moreaux, G. Quality assessment of IDS contribution to ITRF2014 performed by DGFI-TUM. Adv. Space Res. 2016, 58, 2505–2519. [Google Scholar] [CrossRef]
- Seitz, M.; Bloßfeld, M.; Angermann, D.; Schmid, R.; Gerstl, M.; Seitz, F. The new DGFI-TUM realization of the ITRS: DTRF2014 (data). Dtsch. Geodätisches Forsch. Munich 2016. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. Analysis and Results of ITRF2014; Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2017; 76p, ISBN 978-3-86482-088-5. [Google Scholar]
- Dick, W.R.; Thaller, D. (Eds.) IERS Annual Report 2015; Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2016; ISSN 1029-0060. [Google Scholar]
- Bogusz, J.; Figurski, M.; Kontny, B.; Grzempowski, P. Horizontal velocity field derived from EPN and ASG-EUPOS satellite data on the example of South-Western part of Poland. Acta Geodyn. Geomater. 2012, 9, 349–357. [Google Scholar]
- Schenk, V.; Cacoń, S.; Schenková, Z.; Kontny, B.; Bosy, B.; Kottnauer, P. GPS Regional geodynamic network SUDETEN. EGRS Int. J. Explor. Geophys. Remote Sens. Environ. 1999, VI, 28–30. [Google Scholar]
- Kapłon, J.; Kontny, B.; Grzempowski, P.; Schenk, V.; Shenková, Z.; Balek, J.; Holešovský, J. Geosud/Sudeten Network GPS data reprocessing and horizontal site velocity estimation. Acta Geodyn. Geomater. 2014, 11, 65–75. [Google Scholar]
- Schenk, V.; Cacoń, S.; Bosy, J.; Kontny, B.; Kottnauer, P.; Schenková, Z. The GPS geodynamic network SUDETEN—Five annual campaigns (1997–2001). Data processing and results. In Proceedings of the EGS 27th General Assembly, Nice, France, 21–26 April 2002. [Google Scholar]
- Schenk, V.; Schenková, Z.; Cajthamlová, M.; Fučík, Z. Geonas—Geodynamic Network of Permanent GNSS Stations within the Czech Republic. Acta Geodyn. Geomater. 2010, 7, 99–111. [Google Scholar]
- Kapłon, J.; Cacoń, S. Research on the Marginal Sudetic Fault activity with use of GPS and precise leveling techniques. Acta Geodyn. Geomater. 2009, 6, 323–329. [Google Scholar]
- Pešková, I.; Hók, J.; Štěpančíková, P.; Stemberk, J.; Vojtko, R. Results of stress analysis inferred from fault slip data along the Sudetic Marginal Fault (NE part of Bohemian Massif). Acta Geol. Slovaca 2010, 2, 11–16. [Google Scholar]
- Štěpančíková, P.; Hók, J.; Nývlt, D.; Dohnal, J.; Sýkorováa, I.; Stemberk, J. Active tectonics research using trenching technique on the south-eastern section ofthe Sudetic Marginal Fault (NE Bohemian Massif, central Europe). Tectonophysics 2010, 485, 269–282. [Google Scholar]
- Stemberk, J.; Koštak, B.; Cacoń, S. A tectonic pressure pulse and increased geodynamic activity recorded from the long-term monitoring of faults in Europe. Tectonophysics 2010, 487, 1–12. [Google Scholar] [CrossRef]
- Kaczorowski, M.; Wojewoda, J. Neotectonic activity interpreted from a long water-tube tiltmeter record at the SRC Geodynamic Laboratory in Książ, Central Sudetes, SW Poland. Acta Geodyn. Geomater. 2011, 8, 1–13. [Google Scholar]
- Teisseyre, H.; Gawroński, O. Świebodzice Sheet—The Detailed Geological Map of Poland in scale 1:25,000; Polish Geological Institute: Warsaw, Poland, 1965. [Google Scholar]
- Nemec, W.; Porębski, S.J.; Steel, R.J. Texture and structure of resedimented conglomerates: Examples from the Książ Formation (Famennian-Tournaisian), south-western Poland. Sedimentology 1980, 27, 519–538. [Google Scholar] [CrossRef]
- Porębski, S.J. Świebodzice succession (Upper Devonian-Lower Carboniferous, western Sudetes): A prograding, mass-flow dominated fan-delta complex. Geol. Sudet. 1981, 16, 99–190. [Google Scholar]
- Porębski, S.J. Onset of coarse plastic sedimentation in the Variscan realm of the Sudetes (SW Poland): An example from upper Devonian–lower Carboniferous Świebodzice succession. Neues Jahrb. Geol. Paläontologie. Abh. 1990, 179, 259–274. [Google Scholar]
- Żelaźniewicz, A.; Aleksandrowski, P. Regionalizacja tektoniczna Polski—Polska południowo-zachodnia. Przegląd Geol. 2008, 56, 904–911. (In Polish) [Google Scholar]
- Bower, D.R. A sensitive water-level tiltmeter. R. Soc. Phil. Trans. Ser. A 1973, 274, 223–226. [Google Scholar]
- Kaczorowski, M. Non-tidal signals of plumb line variations observed with help of the long water-tube tiltmeter, in Geodynamic Laboratory of PAS in Książ. In Proceedings of the 6th International Symposium on Earth Tides, Jena, Germany, 1–5 September 2008; Volume 144, pp. 11605–11613. [Google Scholar]
- Kasza, D.; Kaczorowski, M.; Zdunek, R.; Wronowski, R. The damages of Ksiaz Castle architecture in relation to routes of recognized tectonic faults and indications of recent tectonic activity of Swiebodzice Depression orogen—Central Sudetes SW Poland. Acta Geodyn. Geomater. 2014, 11, 225–234. [Google Scholar] [CrossRef]
- Zdunek, R.; Kaczorowski, M.; Kasza, D.; Wronowski, R. Preliminary interpretation of determined motions of KSIA and KSI1 GPS Stations in context of collected information about Swiebodzice Trough tectonics. Acta Geodyn. Geomater. 2014, 11, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Kaczorowski, M. High-resolution wide-range tiltmeter: Observations of Earth free oscillations excited by the 26 December 2004 Sumatra–Andaman earthquake. In Earthquake Source Asymmetry, Structural Media and Rotation Effects; Springer: Berlin/Heidelberg, Germany, 2006; pp. 493–520. [Google Scholar]
- Kaczorowski, M. Preliminary results of investigations of long lasting non-tidal signals observed by horizontal pendulums and long water tube tiltmeters in Lower Silesian Geodynamic Laboratory of Polish Academy of Sciences in Książ. Acta Geodyn. Geomater. 2007, 4, 109–119. [Google Scholar]
- Kaczorowski, M. Non-tidal plumb line variations observed with help of the long water-tube and horizontal pendulums tiltmeters in Geodynamic Laboratory of PAS in Książ. Rep. Geod. 2008, 85, 79–86. [Google Scholar]
- Kaczorowski, M. Discussion on strong non-tidal signals registered by horizontal pendulums and water tube tiltmeters in Geodynamic Laboratory of PAS in Książ. Acta Geodyn. Geomater. 2009, 6, 369–381. [Google Scholar]
- Przylibski, T.A.; Kaczorowski, M.; Fijałkowska-Lichwa, L.; Kasza, D.; Zdunek, R.; Wronowski, R. Testing of 222Rn application for recognizing tectonic events observed on water-tube tiltmeters in underground Geodynamic Laboratory of Space Research Centre at Książ (the Sudetes, SW Poland). Appl. Radiat. Isot. 2020, 163, 1–37. [Google Scholar] [CrossRef]
- Chojnicki, T.; Blum, P.A. Analysis of ground motions at the Książ observatory in 1974–1993. Artif. Satell. 1996, 31, 123–129. [Google Scholar]
- Kaczorowski, M.; Kasza, D.; Zdunek, R.; Rudnicki, M.; Wronowski, R. Time Dependencies Between Tectonic Activity of Świebodzice Depression (SW Poland) and Seismic Activity in Poland and Czech Mining Regions. E3S Web Conf. 2019, 105, 02001. [Google Scholar] [CrossRef]
- Ruotsalainen, H.E. Recording deformations of the Earth by using an interferometric water level tilt meter. In Proceedings of the 5th Symposium on the Structure, Composition, and Evolution of the Lithosphere in Finland, Oulu, Finland, 5–6 November 2008. Report S-53. [Google Scholar]
- Wenzel, H.-G. The nanogal software: Earth tide data processing package: Eterna 3.3. Obs. Royal de Belgique. Bull. Inform. Marées Terr. 1996, 124, 9425–9439. [Google Scholar]
- EMSC. European Mediterranean Seismological Centre. 2017. Available online: https://www.emsc-csem.org (accessed on 7 October 2017).
No. | Name of Time Precedent | Description |
---|---|---|
1 | T-1 | 4 passages through zero of the VTAF within ca. 120 h before the shock (very strong condition, very highly probable seismic event during the next 100 h after last passage) |
2 | T-2 | 3 passages through zero of the VTAF within ca. 120 h before the shock and preceding the passage up to 700 h before the shock (strong condition, seismic shock highly probable during the next 100 h after last passage) |
3 | T-3 | 1 passage through zero of the VTAF within ca. 50 h before the shock and 3 VTAF passages through zero 300 h before the shock (medium-strong condition, shock is expected during the next 50 h) |
4 | T-4 | 2 passages through zero of the VTAF within ca. 100 h before the shock and 2 passages close to each other preceded—up to 300 h before the shock (medium-strong condition, shock is expected within 100 h after last passage) |
5 | T-5 | 2 passages through zero of the VTAF with channels close in time to each other within ca. 100 h. Two other channels are shifted in time less than <600 h—shock is expected within ca. 100 h after last passage |
No. | Name of Amplitude Precedent | Description |
---|---|---|
1 | A-1 | Four-fold concentration of the VTAF and close to zero (values of derivatives from the range –22,000 to 22,000 μm/h)—very strong condition –seismic event expected ca. 100 h after last passage of the VTAF through zero |
2 | A-2 | Three-fold concentration of the VTAF—two cases a and b: a: 3 channels close to zero (values of derivatives from –22,000 to 22,000 μm/h) and 1 VTAF channel distant which value is <80,000 μm/h b: 1 channel close to zero (values of VTAF from –22,000 to 22,000 μm/h) and other channels concentrated in distant >22,000 μm/h from zero – seismic event expected ca. 100 h after last passage of the VTAF through zero |
3 | A-3 | Two-fold concentration of the VTAF close to zero (values of derivatives from –22,000 to 22,000 μm/h) and two channels with mutually symmetrical values at the distance of <80,000 μm/h. Seismic event expected ca. 100 h after last passage of the VTAF through zero) |
4 | A-4 | All of the VTAF values distant to zero and of double symmetry of channels. This strong condition occurred rare; high probability of seismic event within 100 h after last passage of the VTAF through zero) |
5 | A-5 | Two-fold concentration of the VTAF close to zero (values of VTAF from the range –25,000 to 25,000 μm/h) and two-fold concentration of the VTAF distant from zero, seismic event expected <100 h after last passage of the VTAF through zero. |
Year | No | Datum (YYYY-MM-DD) and Time (hours, UT) | Mag [MJ] | WT1 Channel 1 | WT1 Channel 2 | WT2 Channel 3 | WT2 Channel 4 | Precedents | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VTAF | Time Lag [hours] | VTAF | Time Lag [hours] | VTAF | Time Lag [hours] | VTAF | Time Lag [hours] | T | A | ||||
2013 | 1 | 2013-02-09 17 | 3.7 | −1446 | 0 | −8464 | 0 | −821 | 2 | 11,304 | 0 | T-1 | A-1 |
2 | 2013-03-09 23 | 3.8 | −30,839 | 256 | −26,482 | 15 | −142,464 | 232 | 73,946 | 291 | T-3 | A-3 | |
3 | 2013-03-19 21 | 4.6 | −7554 | 62 | 7429 | 59 | 1304 | 1 | −6089 | 65 | T-1 | A-1 | |
4 | 2013-03-24 09 | 3.7 | 20,929 | 96 | −35,018 | 54 | 16,268 | 109 | −8196 | 49 | T-1 | A-2a | |
5 | 2013-03-29 17 | 3.6 | 411 | 224 | −15,571 | 182 | 2268 | 237 | 4375 | 22 | T-3 | A-1 | |
6 | 2013-05-27 21 | 3.8 | 571 | 113 | 4321 | 13 | 36,196 | 277 | −19,643 | 86 | T-2 | A-3 | |
7 | 2013-07-13 04 | 3.9 | −3893 | 38 | 29,393 | 80 | 19,946 | 283 | −107,679 | 251 | T-4 | A-2a | |
8 | 2013-07-29 23 | 3.8 | −34,857 | 348 | −21,714 | 183 | −27,589 | 24 | −2196 | 654 | T-3 | A-2b | |
9 | 2013-09-20 01 | 4.1 | −43,768 | 229 | 1929 | 104 | −42,804 | 185 | 4286 | 21 | T-4 | A-5 | |
10 | 2013-11-23 23 | 3.8 | 4554 | 19 | −12,125 | 21 | −3339 | 13 | −8179 | 765 | T-2 | A-1 | |
11 | 2013-12-10 06 | 3.8 | −56,786 | 142 | 14,339 | 122 | 6768 | 14 | −9625 | 269 | T-3 | A-2a | |
2014 | 1 | 2014-03-16 06 | 4.1 | −40,089 | 71 | −49,589 | 270 | −25,321 | 41 | −2804 | 18 | T-2 | A-2b |
2 | 2014-03-20 05 | 4.0 | −27,554 | 166 | −19,839 | 365 | 4518 | 72 | 3179 | 29 | T-5 | A-5 | |
3 | 2014-04-02 15 | 3.8 | −196,054 | 488 | 24,071 | 41 | −2196 | 29 | 7411 | 10 | T-2 | A-3 | |
4 | 2014-07-05 12 | 4.6 | −1321 | 35 | −12,982 | 126 | 4268 | 140 | −9554 | 161 | T-3 | A-1 | |
5 | 2014-07-21 16 | 3.6 | −464 | 1 | −7464 | 70 | 1982 | 124 | 4321 | 42 | T-2 | A-1 | |
6 | 2014-07-21 16 | 3.8 | −464 | 2 | −7464 | 71 | 1982 | 125 | 4321 | 43 | T-2 | A-1 | |
7 | 2014-08-20 04 | 3.7 | −7304 | 163 | 3875 | 26 | 20,179 | 45 | −32,214 | 469 | T-5 | A-3 | |
8 | 2014-10-26 03 | 4.2 | 5179 | 17 | −19,339 | 45 | −38,054 | 104 | −1929 | 84 | T-1 | A-2a | |
9 | 2014-12-12 02 | 4.1 | −15,679 | 23 | −13,321 | 46 | −30,643 | 34 | −12,607 | 694 | T-1 | A-2a | |
2015 | 1 | 2015-02-05 04 | 3.9 | −600 | 0 | 1850 | 0 | 11,300 | 13 | −14,950 | 0 | T-1 | A-3 |
2 | 2015-02-12 18 | 3.8 | −8850 | 10 | 10,300 | 120 | −4600 | 14 | −4150 | 0 | T-1 | A-1 | |
3 | 2015-06-22 04 | 4.0 | 8500 | 607 | −15,435 | 406 | −2950 | 282 | −9700 | 20 | T-3 | A-1 | |
4 | 2015-07-08 06 | 4.4 | −4550 | 6 | −4135 | 792 | 1700 | 198 | −2150 | 170 | T-3 | A-1 | |
5 | 2015-07-19 19 | 4.1 | −1650 | 37 | −9135 | 241 | −9300 | 50 | 300 | 0 | T-2 | A-1 | |
6 | 2015-09-09 19 | 4.0 | −5400 | 133 | −27,185 | 136 | −1550 | 37 | −11,450 | 41 | T-4 | A-2a | |
7 | 2015-10-29 02 | 4.0 | −22,700 | 47 | 26,165 | 39 | −16,400 | 193 | 18,550 | 11 | T-2 | A-4 | |
8 | 2015-11-20 07 | 3.7 | −22,950 | 147 | 13,715 | 41 | 8500 | 92 | 25,450 | 57 | T-2 | A-3 | |
2016 | 1 | 2016-02-25 04 | 4.1 | −7119 | 72 | 3476 | 64 | 8357 | 407 | −14,161 | 25 | T-2 | A-1 |
2 | 2016-03-08 03 | 3.6 | −2667 | 7 | 3238 | 89 | 3524 | 578 | 18,750 | 81 | T-2 | A-1 | |
3 | 2016-04-08 15 | 3.7 | 10,357 | 63 | −5262 | 71 | 5881 | 711 | 15,839 | 214 | T-5 | A-1 | |
4 | 2016-04-28 12 | 3.6 | −2286 | 5 | 5786 | 14 | 6667 | 736 | 768 | 0 | T-2 | A-1 | |
5 | 2016-05-05 15 | 3.7 | −2833 | 78 | 4571 | 88 | −49,548 | 30 | −19,482 | 356 | T-2 | A-2a | |
6 | 2016-05-11 04 | 3.9 | 9595 | 291 | −6214 | 294 | 26,000 | 45 | −16,464 | 12 | T-4 | A-2a | |
7 | 2016-05-12 05 | 3.8 | −3929 | 132 | 405 | 2 | 18,762 | 374 | −18,268 | 58 | T-5 | A-1 | |
8 | 2016-06-02 04 | 4.1 | 548 | 2 | 714 | 169 | 11,357 | 643 | −14,911 | 90 | T-5 | A1 | |
9 | 2016-07-30 19 | 4.4 | 35,690 | 196 | −30,500 | 204 | 11,000 | 115 | −10,929 | 16 | T-3 | A-3 | |
10 | 2016-08-13 12 | 4.3 | −54,405 | 130 | 39,619 | 421 | −174,214 | 189 | −23,393 | 9 | T-3 | *LD | |
11 | 2016-08-24 17 | 3.8 | 1429 | 7 | 5857 | 477 | 1143 | 2 | 10,750 | 18 | T-2 | A-1 | |
12 | 2016-09-14 07 | 4.1 | −11,762 | 260 | 1571 | 0 | 9905 | 34 | 10,196 | 20 | T-2 | A-1 | |
13 | 2016-10-15 15 | 3.7 | −7119 | 72 | 3476 | 64 | 8357 | 407 | −14,161 | 25 | T-2 | A-1 | |
14 | 2016-10-17 23 | 4.3 | −2667 | 7 | 3238 | 89 | 3524 | 578 | 18,750 | 81 | T-2 | A-1 | |
15 | 2016-11-29 20 | 4.4 | 10,357 | 63 | −5262 | 71 | 5881 | 711 | 15,839 | 214 | T-5 | A-1 | |
2017 | 1 | 2017-01-22 19 | 4.0 | −22,619 | 0 | −15,357 | 0 | 500 | 30 | −7357 | 0 | T-1 | A-2a |
2 | 2017-03-17 08 | 3.7 | 18,881 | 240 | −12,238 | 46 | −881 | 72 | 15,595 | 81 | T-2 | A-1 | |
3 | 2017-04-08 22 | 4.3 | −27,667 | 331 | −78,905 | 349 | −13,833 | 116 | 1524 | 5 | T-4 | A2a/A5 | |
4 | 2017-05-31 20 | 4.3 | −5405 | 33 | −3643 | 723 | 262 | 6 | −8595 | 391 | T-5 | A-1 | |
5 | 2017-10-13 13 | 3.6 | 22,048 | 385 | 12,190 | 827 | 18,262 | 400 | 6429 | 18 | T-3 | A-2a | |
6 | 2017-10-21 03 | 3.6 | 4667 | 567 | 14,381 | 41 | 17,429 | 582 | −5190 | 16 | T-4 | A-1 | |
7 | 2017-10-27 05 | 3.8 | 16,405 | 65 | 15,833 | 187 | 1714 | 39 | 6048 | 36 | T-2 | A-1 | |
8 | 2017-11-10 11 | 4.0 | 2048 | 79 | 1452 | 529 | 3452 | 68 | 71 | 205 | T-4 | A-1 | |
9 | 2017-11-25 23 | 3.8 | 2810 | 141 | 786 | 901 | 5167 | 127 | −2024 | 54 | T-2 | A-1 | |
10 | 2017-12-07 17 | 4.7 | 9619 | 47 | −10,143 | 18 | 10,881 | 409 | 4643 | 18 | T-2 | A-1 | |
11 | 2017-12-12 11 | 3.7 | 9667 | 161 | −16,762 | 132 | 12,095 | 523 | −12,667 | 57 | T-3 | A-1 | |
12 | 2017-12-26 11 | 4.8 | 524 | 3 | 1381 | 117 | 8524 | 230 | −857 | 129 | T-2 | A-1 | |
13 | 2017-12-26 23 | 3.8 | 2786 | 15 | 2048 | 129 | 4595 | 242 | 1143 | 8 | T-2 | A-1 |
Mag | 2013 | 2014 | 2015 | 2016 | 2017 | Sum of Events | Amplitude Precedents | Time Precedents | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2a | A2b | A3 | A4 | A5 | T1 | T2 | T3 | T4 | T5 | ||||||||
3.6/3.7 | Sum of Events | 3 | 2 | 1 | 5 | 4 | 15 | |||||||||||
Precedent A | A1, A2a, A1 | A1, A3 | A3 | A3, A2a, A1, A1, *LD | A1, A2a, A1, A1 | 8 | 3 | 3 | ||||||||||
Precedent T | T1, T1, T3 | T2, T5 | T2 | T1, T2, T2, T2, T3 | T2, T3, T4, T3 | 3 | 6 | 4 | 1 | 1 | ||||||||
3.8/3.9 | Num. of Event | 6 | 2 | 3 | 3 | 3 | 17 | |||||||||||
Precedent A | A3, A3, A2a, A2b, A1, A2a | A3, A1 | A3, A1, A1 | A1, A1, A1 | A1, A1, A1 | 10 | 2 | 1 | 4 | |||||||||
Precedent T | T3, T2, T4, T3, T2, T3 | T2, T2 | T1, T1, T2 | T5, T2, T5 | T2, T2, T2 | 2 | 9 | 3 | 1 | 2 | ||||||||
4.0/4.1 | Num. of Events | 1 | 3 | 4 | 3 | 2 | 13 | |||||||||||
Precedent A | A5 | A2b, A5, A2a | A1, A1, A2a, A4 | A1, A2a, A3 | A2a, A1 | 4 | 4 | 1 | 1 | 1 | 2 | |||||||
Precedent T | T4 | T2, T5, T1 | T3, T2, T4, T2 | T1, T2, T3 | T1, T4 | 3 | 4 | 2 | 3 | 1 | ||||||||
4.2/4.3 | Num. of Events | - | 1 | - | 2 | 2 | 5 | |||||||||||
Precedent A | - | A2a | - | A1, A1 | A2a/A5, A1 | 3 | 2 | |||||||||||
Precedent T | - | T1 | - | T5, T2 | T4, T5 | 1 | 1 | 1 | 2 | |||||||||
4.4/4.5 | Num. of Events | - | - | 1 | 2 | - | 3 | |||||||||||
Precedent A | - | - | A1 | A2a, A1 | - | 2 | 1 | |||||||||||
Precedent T | - | - | T3 | T4, T2 | - | 1 | 1 | 1 | ||||||||||
4.6/4.7 | Num. of Events | 1 | 1 | - | - | 1 | 3 | |||||||||||
Precedent A | A1 | A1 | - | - | A1 | 3 | ||||||||||||
Precedent T | T1 | T3 | - | - | T2 | 1 | 1 | 1 | ||||||||||
4.8/4.9 | Num. of Events | - | - | - | - | 1 | 1 | |||||||||||
Precedent A | - | - | - | - | A1 | 1 | ||||||||||||
Precedent T | - | - | - | - | T2 | 1 | ||||||||||||
Σ of Events | 11 | 9 | 9 | 15 | 13 | 57 | Sum of Amplitude Precedents in Category | Sum of Time Precedents in Category | ||||||||||
Σ of Precedents | 31 | 12 | 2 | 8 | 1 | 2 | 10 | 23 | 11 | 7 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczorowski, M.; Kasza, D.; Zdunek, R.; Wronowski, R. Time Distribution of Strong Seismic Events in the Fore-Sudetic Monocline in Context of Signals Registered by Water-Tube Gauges in Książ Geodynamic Laboratory. Sensors 2021, 21, 1603. https://doi.org/10.3390/s21051603
Kaczorowski M, Kasza D, Zdunek R, Wronowski R. Time Distribution of Strong Seismic Events in the Fore-Sudetic Monocline in Context of Signals Registered by Water-Tube Gauges in Książ Geodynamic Laboratory. Sensors. 2021; 21(5):1603. https://doi.org/10.3390/s21051603
Chicago/Turabian StyleKaczorowski, Marek, Damian Kasza, Ryszard Zdunek, and Roman Wronowski. 2021. "Time Distribution of Strong Seismic Events in the Fore-Sudetic Monocline in Context of Signals Registered by Water-Tube Gauges in Książ Geodynamic Laboratory" Sensors 21, no. 5: 1603. https://doi.org/10.3390/s21051603
APA StyleKaczorowski, M., Kasza, D., Zdunek, R., & Wronowski, R. (2021). Time Distribution of Strong Seismic Events in the Fore-Sudetic Monocline in Context of Signals Registered by Water-Tube Gauges in Książ Geodynamic Laboratory. Sensors, 21(5), 1603. https://doi.org/10.3390/s21051603