Low-Cost Fluorescence Sensor for Ammonia Measurement in Livestock Houses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fluorescence Sensor System
2.2. Scrubber
2.3. Chemicals and Instruments
2.4. Fluorescence Detector
2.5. Pig House
3. Results
3.1. Scrubber
3.2. Laboratory Calibrations
3.3. Pig House Measurements
4. Discussion
4.1. Laboratory Calibrations
4.2. Pig House Measurements
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Nielsen, O.K.; Plejdrup, M.S.; Winther, M.; Mikkelsen, M.H.; Nielsen, M.; Gyldenkærne, S.; Fauser, P.; Albrektsen, R.; Hjelgaard, K.H.; Bruun, H.G.; et al. Annual Danish Informative Inventory Report to UNECE. Emission Inventories from the Base Year of the Protocols to Year 2015, Aarhus University, DCE Danish Centre for Environment and Energy. 2017. Available online: http://dce2.au.dk/pub/SR222.pdf (accessed on 27 February 2021).
- Shonkwiler, K.B.; Ham, J.M. Ammonia emissions from a beef feedlot: Comparison of inverse modeling techniques using long-path and point measurements of fenceline NH3. Agric. For. Meteorol. 2018, 258, 29–42. [Google Scholar] [CrossRef]
- Aneja, V.P.; Roelle, P.A.; Murray, G.C.; Southerland, J.; Erisman, J.W.; Fowler, D.; Asman, W.A.H.; Patni, N. Atmospheric nitrogen compounds II: Emissions, transport, transformation, deposition and assessment. Atmos. Environ. 2001, 35, 1903–1911. [Google Scholar] [CrossRef]
- Ge, B.; Xu, X.; Ma, Z.; Pan, X.; Wang, Z.; Lin, W.; Ouyang, B.; Xu, D.; Lee, J.; Zheng, M.; et al. Role of Ammonia on the Feedback Between AWC and Inorganic Aerosol Formation During Heavy Pollution in the North China Plain. Earth Space Sci. 2019, 6, 1675–1693. [Google Scholar] [CrossRef] [Green Version]
- Chu, B.; Zhang, X.; Liu, Y.; He, H.; Sun, Y.; Jiang, J.; Li, J.; Hao, J. Synergetic formation of secondary inorganic and organic aerosol: Effect of SO2 and NH3 on particle formation and growth. Atmos. Chem. Phys. 2016, 16, 14219–14230. [Google Scholar] [CrossRef] [Green Version]
- Aneja, V.P.; Schlesinger, W.H.; Erisman, J.W. Effects of agriculture upon the air quality and climate: Research, policy, and regulations. Environ. Sci. Technol. 2009, 43, 4234–4240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, C.I.; Phalen, R.F.; Solomon, P.A. Airborne Particulate Matter and Human Health: A Review. Aerosol Sci. Technol. 2005, 39, 737–749. [Google Scholar] [CrossRef]
- Aneja, V.P.; Blunden, J.; James, K.; Schlesinger, W.H.; Knighton, R.; Gilliam, W.; Jennings, G.; Niyogi, D.; Cole, S. Ammonia Assessment from Agriculture: U.S. Status and Needs. J. Environ. Qual. 2008, 37, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Roth, M. Fluorescence Reaction for Amino Acids. Anal. Chem. 1971, 43, 880–882. [Google Scholar] [CrossRef]
- Taylor, S.; Ninjoor, V.; Dowd, D.M.; Tappel, A.L. Cathepsin B2 measurement by sensitive fluorometric ammonia analysis. Anal. Biochem. 1974, 60, 153–162. [Google Scholar] [CrossRef]
- Genfa, Z.; Dasgupta, P.K. Fluorometric Measurement of Aqueous Ammonium Ion in a Flow Injection System. Anal. Chem. 1989, 61, 408–412. [Google Scholar] [CrossRef]
- Abdel-Latif, M.S.; Guilbault, G.G. Fluorometric determination of urea by flow injection analysis. J. Biotechnol. 1990, 14, 53–61. [Google Scholar] [CrossRef]
- Jacobs, W.A. o-Phthalaldehyde-sulfite derivaization of primary amines for liquid chromatography-electrochemistry. J. Chromatogr. A 1987, 392, 435–441. [Google Scholar] [CrossRef]
- Holmes, R.M.; Aminot, A.; Kérouel, R.; Hooker, B.A.; Peterson, B.J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 1999, 56, 1801–1808. [Google Scholar] [CrossRef]
- Ohira, S.-I.; Heima, M.; Yamasaki, T.; Tanaka, T.; Koga, T.; Toda, K. Flow-based ammonia gas analyzer with an open channel scrubber for indoor environments. Talanta 2013, 116, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Von Bobrutzki, K.; Braban, C.F.; Famulari, D.; Jones, S.K.; Blackall, T.; Smith, T.E.L.; Blom, M.; Coe, H.; Gallagher, M.; Ghalaieny, M.; et al. Field inter-comparison of eleven atmospheric ammonia measurement techniques. Atmos. Meas. Tech. 2010, 3, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Kamp, J.N.; Chowdhury, A.; Adamsen, A.P.S.; Feilberg, A. Negligible influence of livestock contaminants and sampling system on ammonia measurements with cavity ring-down spectroscopy. Atmos. Meas. Tech. 2019, 12, 2837–2850. [Google Scholar] [CrossRef] [Green Version]
- Spirig, C.; Flechard, C.R.; Ammann, C.; Neftel, A. The annual ammonia budget of fertilised cut grassland—Part 1: Micrometeorological flux measurements and emissions after slurry application. Biogeosciences 2010, 7, 521–536. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Rong, L.; Kamp, J.; Kong, X.; Adamsen, A.P.S.; Chowdhury, A.; Feilberg, A. Photoacoustic measurement with infrared band-pass filters significantly overestimates NH3 emissions from cattle houses due to volatile organic compound (VOC) interferences. Atmos. Meas. Tech. 2020, 13, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Sintermann, J.; Dietrich, K.; Häni, C.; Bell, M.; Jocher, M.; Neftel, A. A miniDOAS instrument optimised for ammonia field measurements. Atmos. Meas. Tech. 2016, 9, 2721–2734. [Google Scholar] [CrossRef] [Green Version]
- Norman, M.; Hansel, A.; Wisthaler, A. O2+ as reagent ion in the PTR-MS instrument: Detection of gas-phase ammonia. Int. J. Mass Spectrom. 2007, 265, 382–387. [Google Scholar] [CrossRef]
- Pedersen, S.V.; di Perta, E.S.; Hafner, S.D.; Pacholski, A.S.; Sommer, S.G. Evaluation of a Simple, Small-Plot Meteorological Technique for Measurement of Ammonia Emission: Feasibility, Costs, and Recommendations. Trans. ASABE 2018, 61, 103–115. [Google Scholar] [CrossRef]
- Leuning, R.; Freney, J.R.; Denmead, O.T.; Simpson, J.R. A sampler for measuring atmospheric ammonia flux. Atmos. Environ. 1985, 19, 1117–1124. [Google Scholar] [CrossRef]
- Häni, C.; Sintermann, J.; Kupper, T.; Jocher, M.; Neftel, A. Ammonia emission after slurry application to grassland in Switzerland. Atmos. Environ. 2016, 125, 92–99. [Google Scholar] [CrossRef]
- Hansen, M.J.; Kamp, J.N.; Peter, A.; Adamsen, S.; Feilberg, A. Low-emission slurry pits for pig houses with straw application. Biosyst. Eng. 2020, 197, 56–63. [Google Scholar] [CrossRef]
- Hansen, M.J.; Jonassen, K.E.N.; Løkke, M.M.; Adamsen, A.P.S.; Feilberg, A. Multivariate prediction of odor from pig production based on in-situ measurement of odorants. Atmos. Environ. 2016, 135, 50–58. [Google Scholar] [CrossRef]
- Hale, B.D.; Fairchild, B.; Worley, J.; Harper, L.; Ritz, C.; Czarick, M.; Rathbun, S.L.; Irvin, E.A.; Naeher, L.P. Comparison of ammonia measurenment methods inside and outside tunnel-ventilated broiler houses. J. Appl. Poult. Res. 2010, 19, 245–262. [Google Scholar] [CrossRef]
- Wagner-Riddle, C.; Park, K.H.; Thurtell, G.W. A micrometeorological mass balance approach for greenhouse gas flux measurements from stored animal manure. Agric. For. Meteorol. 2006, 136, 175–187. [Google Scholar] [CrossRef]
- Sommer, S.G.; McGinn, S.M.; Flesch, T.K. Simple use of the backwards Lagrangian stochastic dispersion technique for measuring ammonia emission from small field-plots. Eur. J. Agron. 2005, 23, 1–7. [Google Scholar] [CrossRef]
Position | Sensor | N | Mean (ppb) | Min (ppb) | Max (ppb) | CV (%) |
---|---|---|---|---|---|---|
Room 1 | CRDS | 2176 | 6271 | 4572 | 8155 | 12.6 |
Fluoresc. sensor | 2176 | 6068 | 4539 | 7774 | 12.0 | |
Room 2 | CRDS | 2288 | 1993 | 1477 | 2773 | 14.1 |
Fluoresc. sensor | 2288 | 2075 | 1318 | 4126 | 17.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamp, J.N.; Sørensen, L.L.; Hansen, M.J.; Nyord, T.; Feilberg, A. Low-Cost Fluorescence Sensor for Ammonia Measurement in Livestock Houses. Sensors 2021, 21, 1701. https://doi.org/10.3390/s21051701
Kamp JN, Sørensen LL, Hansen MJ, Nyord T, Feilberg A. Low-Cost Fluorescence Sensor for Ammonia Measurement in Livestock Houses. Sensors. 2021; 21(5):1701. https://doi.org/10.3390/s21051701
Chicago/Turabian StyleKamp, Jesper Nørlem, Lise Lotte Sørensen, Michael Jørgen Hansen, Tavs Nyord, and Anders Feilberg. 2021. "Low-Cost Fluorescence Sensor for Ammonia Measurement in Livestock Houses" Sensors 21, no. 5: 1701. https://doi.org/10.3390/s21051701
APA StyleKamp, J. N., Sørensen, L. L., Hansen, M. J., Nyord, T., & Feilberg, A. (2021). Low-Cost Fluorescence Sensor for Ammonia Measurement in Livestock Houses. Sensors, 21(5), 1701. https://doi.org/10.3390/s21051701