Convolutional Neural Network for Drowsiness Detection Using EEG Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
Signal Collection
2.2. Data Preprocessing
2.2.1. Data Preparation
2.2.2. Signals Annotation
- Gamma bands have a frequency ranging from 30 to 70 Hz and an amplitude value between 3 µV to 5 µV. These waves are used to detect Alzheimer’s disease [69].
- Beta wave is generated from the cortex region with frequency values from 13 to 30 Hz and a low amplitude ranging from 2 to 20 µV. These waves are related to awake states and various pathologies and symptoms of drugs.
- Alpha band is produced from the thalamus area with a frequency ranging between 8 to 13 Hz and amplitude values between 20 to 60 µV. This band is detected with eyes closed to generating relaxation and awake states with attenuating drowsiness.
- Theta wave is produced from the neocortex and hippocampus areas of the brain with frequency values from 4 to 7 Hz and an amplitude ranging from 20 to 100 µV. This band is correlated with a drowsiness state.
- Delta wave is produced from the thalamus with a spectrum range of 4 Hz and an amplitude ranging from 20 to 200 µV. The wave is shown in the deep stage of sleep.
- Alpha-Theta waves have a frequency ranging from 5 to 9 Hz and amplitude values between 20 to 100 µV. These bands refer to awake and drowsy states.
2.2.3. Data Augmentation
2.3. Model Analysis
2.3.1. Comparative Study
- 2 states (0, 1),
- 3 states (0, 0.5, 1),
- 4 states (0, 0.33, 0.66, 1),
2.3.2. Proposed Simple CNN Model
- Convolutional layersThe layers allow filter application and features extraction [108] based on the input EEG signals. The equation below presents the convolution operation.
- BatchNormalization layersAs known in DL, there are two fundamental problems [109], which are the over-fitting and the long training duration. The Batch Normalization (BN) layers are used to scale and speed up the learning process. Accordingly, each BN stratum normalizes the previous activation layer by subtracting the average batches, as well as divides it by the standard deviation.
- Dropout layerEach dropout layer is considered as a regularization technique and allows to improve over-adjustment on neural networks in which it decreases the error rate in the classification process. In the proposed model, the value of dropout is equal to 0.2. To avoid over-fitting, we have inactivated 20% of the neurons. We have used three dropout layers in our model.
- Max-Pooling1D layerThe sample-based discretization max-pooling-1D blocks is used to sub-sample each input layer by reducing its dimensionality and decreasing the number of the parameters to learn, thereby reducing calculation costs.
- Flatten layerA multidimensional data output is given in the previous step, which cannot be read directly from this neural network, and the model is therefore flattened.
- Dense layersThe dense layer has the role of describing the connectivity with the next and intermediate layers of neurons. We have used two fully connected layers in our architecture. In the first dense of our model, we used a hidden layer of 128 neurons to have better classification results. For the second dense, the value of the final neuron is equal to 1. Binary classification is applied in this work, so a single neuron is sufficient to denote class “1” or “0”.
3. Experimental Validation
3.1. Dataset
3.2. Experimental Details
- Recording by 14 electrodes including the frontal and the anterior parietal (AF3, AF4, F3, F4, F7, F8, FC5, FC6), the temporal (T7, T8), and the occipital-parietal (O1, O2, P7, P8).
- Recording by 7 (AF3, F7, F3, T7, O2, P8, F8) electrodes from parietal, occipital, pre-frontal and temporal areas.
- Recording by 4 (T7,T8, O1 and O2) electrodes from the temporal and occipital areas.
- Recording by 2 (O1 and O2) electrodes from the occipital area.
3.2.1. Experiments without DA
3.2.2. Experiments with DA
3.3. Comparison
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANNs | Artificial Neural Networks |
AE | Auto-encoder |
APIs | Application Programming Interfaces |
AI | Artificial Intelligence |
BCI | Brain Computer Interface |
BN | BatchNormalization |
CNN | Convolutional Neural Network |
CNBLS | Complex Network-based Broad Learning System |
CMS | Common Mode Sense |
CSV | Comma Separated Values |
CNS | Central Nervous System |
DD | Drowsiness Detection |
DL | Deep Learning |
DA | Data Augmentation |
DSNs | Deep Stacking Networks |
DE | Differential Entropy |
DRL | Driven Right Leg |
EEG | Electroencephalogram |
ECG | Electrocardiogram |
EMG | Electromyogram |
EOG | Electrooculogram |
EDF | European Data Interface |
FIR | Finite Impulse Response |
FFT | Fast Fourier Transformation |
FP | False Positive |
FN | False Negative |
GPU | Graphics Processing Unit |
IIR | Infinite Impulse Response |
LSTM | Long Short Term Memory |
ML | Machine Learning |
NIRS | Near Infrared Spectroscopy |
PERCLOS | Percentage of eye closure |
RNNs | Recurrent Neural Networks |
ResNet | Residual Network |
RMSprop | Root Mean Squence Propagation |
ReLU | Rectified Linear Unit |
SGD | Stochastic Gradient Descent Optimizer |
TP | True Positive |
TN | True Negative |
VGGNet | Visual Geometry Group Network |
References
- Sahayadhas, A.; Sundaraj, K.; Murugappan, M.; Palaniappan, R. Physiological Signal based Detection of Driver Hypovigilance using Higher Order Spectra. Expert Syst. Appl. 2015, 42, 8669–8677. [Google Scholar] [CrossRef]
- Ghandour, A.; Hammoud, H.; Al-Hajj, S. Analyzing Factors Associated with Fatal Road Crashes: A Machine Learning Approach. Int. J. Environ. Res. Public Health 2020, 17, 4111. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Gast, C.; Grube, R.; Craig, K. Fatigue Detection in Commercial Flight Operations: Results Using Physiological Measures. Procedia Manuf. 2015, 3, 2357–2364. [Google Scholar] [CrossRef] [Green Version]
- Neri, D.; Shappell, S.; DeJohn, C. Simulated Sustained Flight Operations and Performance, Part 1: Effects of Fatigue. Mil. Psychol. 1992, 4, 137–155. [Google Scholar] [CrossRef]
- Hu, J.; Wang, P. Noise Robustness Analysis of Performance for EEG-Based Driver Fatigue Detection Using Different Entropy Feature Sets. Entropy 2017, 19, 385. [Google Scholar]
- Choi, Y.; Kwon, N.; Lee, S.; Shin, Y.; Ryo, C.; Park, J.; Shin, D. Hypovigilance Detection for UCAV Operators Based on a Hidden Markov Model. Comput. Math. Methods Med. 2014, 2014, 567–645. [Google Scholar] [CrossRef]
- Murugan, S.; Selvaraj, J.; Sahayadhas, A. Driver Hypovigilance Detection for Safe Driving using Infrared Camera. In Proceedings of the Fifth International Conference on Inventive Computation Technologies (ICICT), Tamilnadu, India, 26–28 February 2020; pp. 413–418. [Google Scholar]
- Chaari, L.; Golubnitschaja, O. Covid-19 pandemic by the “real-time” monitoring: The Tunisian case and lessons for global epidemics in the context of 3PM strategies. EPMA J. 2020, 11, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Gwak, J.; Hirao, A.; Shino, M. An Investigation of Early Detection of Driver Drowsiness Using Ensemble Machine Learning Based on Hybrid Sensing. Appl. Sci. 2020, 10, 2890. [Google Scholar] [CrossRef]
- Houssaini, A.; Sabri, A.; Qjidaa, H.; Aarab, A. Real-Time Driver’s Hypovigilance Detection using Facial Landmarks. In Proceedings of the International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), Fez, Morocco, 30 May 2019; pp. 1–4. [Google Scholar]
- Boudaya, A.; Bouaziz, B.; Chaabene, S.; Chaari, L.; Ammar, A.; Hökelmann, A. EEG-Based Hypo-vigilance Detection Using Convolutional Neural Network. In Proceedings of the International Conference on Smart Living and Public Health (ICOST), Hammamet, Tunisia, 24–26 June 2020; pp. 69–78. [Google Scholar]
- Murugan, S.; Selvaraj, J.; Sahayadhas, A. Detection and analysis: Driver state with electrocardiogram (ECG). Phys. Eng. Sci. Med. 2020, 43, 525–537. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, F.; Tang, J. Real-Time System for Driver Fatigue Detection by RGB-D Camera. Assoc. Comput. Mach. 2015, 6. [Google Scholar] [CrossRef]
- Dinges, D. An overview of sleepiness and accidents. J. Sleep Res. 1995, 4, 4–14. [Google Scholar] [CrossRef]
- Stanley, P.; Prahash, T.; Lal, S.; Daniel, P. Embedded based drowsiness detection using EEG signals. In Proceedings of the IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September 2017; pp. 2596–2600. [Google Scholar]
- Gromer, M.; Salb, D.; Walzer, T.; Madrid, N.; Seepold, R. ECG sensor for detection of driver’s drowsiness. Procedia Comput. Sci. 2019, 159, 1938–1946. [Google Scholar] [CrossRef]
- Choi, H. EMG Feature Extraction for Driver’s Drowsiness Using RF Wireless Power Transmission Method. Int. J. Eng. Adv. Technol. IJEAT 2019, 8, 494–497. [Google Scholar]
- Ahn, S.; Nguyen, T.; Jang, H.; Kim, J.; Jun, S. Exploring neuro-physiological correlates of drivers’ mental fatigue caused by sleep deprivation using simultaneous EEG, ECG, and fNIRS data. Front. Hum. Neurosci. 2016, 10, 219. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Fu, R. Real-Time ECG-Based Detection of Fatigue Driving Using Sample Entropy. Entropy 2018, 20, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahayadhas, A.; Sundaraj, K.; Murugappan, M. Electromyogram signal based hypovigilance detection. Biomed. Res. 2014, 25, 281–288. [Google Scholar]
- Chen, D.; Ma, Z.; Li, B.; Yan, Z.; Li, W. Drowsiness Detection with Electrooculography Signal Using a System Dynamics Approach. J. Dyn. Syst. Meas. Control 2017, 139, 081003. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, B.; Li, R.; Wang, C.; Wang, J.; She, Q.; Luo, Z.; Zhang, Y. Driving Fatigue Detection from EEG Using a Modified PCANet Method. Comput. Intell. Neurosci. 2019, 2019, 4721863. [Google Scholar] [CrossRef] [Green Version]
- Papadelis, C.; Chen, Z.; Papadeli, C.K.; Bamidis, P.; Chouvarda, I.; Bekiaris, E.; Maglaveras, N. Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2007, 118, 1906–1922. [Google Scholar] [CrossRef] [PubMed]
- LaRocco, J.; Le, M.; Paeng, D. A Systemic Review of Available Low-Cost EEG Headsets Used for Drowsiness Detection. Front. Neuroinform. 2020, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Trutschel, U.; Sirois, B.; Sommer, D.; Golz, M.; Edwards, D. PERCLOS: An Alertness Measure of the Past. In Proceedings of the 6th International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design: Driving Assessment 2011, Lake Tahoe, CA, USA, 27–30 June 2011; pp. 172–179. [Google Scholar] [CrossRef]
- Duvinage, M.; Castermans, T.; Petieau, M.; Hoellinger, T.; Cheron, G.; Dutoit, T. Performance of the Emotiv Epoc headset for P300-based applications. BioMed. Eng. Online 2013, 12, 56. [Google Scholar] [CrossRef] [Green Version]
- Abichou, Y.; Chaabene, S.; Chaari, L. A sleep monitoring method with EEG signals. In Proceedings of the International Conference on Digital Health Technologies (ICDHT), Hammamet, Tunisia, 9–11 December 2019; pp. 1–8. [Google Scholar]
- Aboalayon, K.; Faezipour, M.; Almuhammadi, W.; Moslehpour, S. Sleep Stage Classification Using EEG Signal Analysis: A Comprehensive Survey and New Investigation. Entropy 2016, 18, 272. [Google Scholar] [CrossRef]
- Ngxande, M.; Tapamo, J.; Burke, M. Driver drowsiness detection using behavioral measures and machine learning techniques: A review of state-of-art techniques. In Proceedings of the Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech), Bloemfontein, South Africa, 30 November–1 December 2017; pp. 156–161. [Google Scholar]
- Patil, B. Experimental Study on Assessment on Impact of Biometric Parameters on Drowsiness based on Yawning & head movement using Support Vector Machine. Int. J. Comput. Sci. Manag. Res. 2013, 2. [Google Scholar] [CrossRef]
- Zorgui, S.; Chaabene, S.; Bouaziz, B.; Batatia, H.; Chaari, L. A Convolutional Neural Network for Lentigo Diagnosis. In Proceedings of the International Conference on Smart Living and Public Health (ICOST), Hammamet, Tunisia, 24–26 June 2020; pp. 89–99. [Google Scholar]
- Zhu, X.; Zheng, W.; Lu, B.; Chen, X.; Chen, S.; Wang, C. EOG-based drowsiness detection using convolutional neural networks. In Proceedings of the International Joint Conference on Neural Networks, Beijing, China, 6–11 July 2014; pp. 128–134. [Google Scholar]
- Wang, X.; Zhao, Y.; Pourpanah, F. Recent advances in deep learning. Int. J. Mach. Learn. Cybern. 2020, 11, 747–750. [Google Scholar] [CrossRef] [Green Version]
- Gragnaniello, D.; Bottino, A.; Cumani, S.; Kim, W. Special Issue on Advances in Deep Learning. Appl. Sci. 2020, 10, 3172. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [Green Version]
- Alom, M.; Taha, T.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.; Hasan, M.; Essen, B.V.; Awwal, A.; Asari, V. A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics 2019, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Ed-doughmi, Y.; Idrissi, N. Driver Fatigue Detection using Recurrent Neural Networks. In Proceedings of the 2nd International Conference on Networking, Information Systems & Security, Rabat, Morocco, 27–28 March 2019; 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Jeong, J.; Yu, B.; Lee, D.; Lee, S. Classification of Drowsiness Levels Based on a Deep Spatio-Temporal Convolutional Bidirectional LSTM Network Using Electroencephalography Signals. Brain Sci. 2019, 9, 348. [Google Scholar] [CrossRef] [Green Version]
- Vesselenyi, T.; Moca, S.; Rus, A.; Mitran, T.; Tătaru, B. Driver drowsiness detection using ANN image processing. IOP Conf. Ser. Mater. Sci. Eng. 2017, 252, 012097. [Google Scholar] [CrossRef]
- Guarda, L.; Astorga, N.; Droguett, E.; Moura, M.; Ramos, M. Drowsiness Detection Using Electroencephalography Signals: A Deep Learning Based Model. In Proceedings of the Probabilistic Safety Assessment and Management PSAM, Los Angeles, CA, USA, 16 September 2018. [Google Scholar]
- Deng, L.; He, X.; Gao, J. Deep stacking networks for information retrieval. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3153–3157. [Google Scholar]
- Alaskar, H. Convolutional Neural Network Application in Biomedical Signals. J. Comput. Sci. Inf. Technol. 2018, 6, 45–59. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, Y.; Xiong, Q.; Fan, M.; Sun, G.; Ma, L.; Liu, T. Research on Healthy Anomaly Detection Model Based on Deep Learning from Multiple Time-Series Physiological Signals. Sci. Program. 2016, 2016, 5642856. [Google Scholar] [CrossRef] [Green Version]
- Piekarski, M.; Korjakowska, J.; Wawrzyniak, A.; Gorgon, M. Convolutional neural network architecture for beam instabilities identification in Synchrotron Radiation Systems as an anomaly detection problem. Measurement 2020, 165, 108116. [Google Scholar] [CrossRef]
- Chakraborty, S.; Aich, S.; Joo, M.; Sain, M.; Kim, H. A Multichannel Convolutional Neural Network Architecture for the Detection of the State of Mind Using Physiological Signals from Wearable Devices. J. Healthc. Eng. 2019, 2019, 5397814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, Y.; Banville, H.; Albuquerque, I.; Gramfort, A.; Falk, T.; Faubert, J. Deep learning-based electroencephalography analysis: A systematic review. arXiv 2019, arXiv:1901.05498. [Google Scholar] [CrossRef]
- Salamon, J.; Bello, J. Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification. arXiv 2016, arXiv:1608.04363. [Google Scholar] [CrossRef]
- Dwivedi, K.; Biswaranjan, K.; Sethi, A. Drowsy driver detection using representation learning. In Proceedings of the IEEE International Advance Computing Conference (IACC), Gurgaon, India, 21–22 February 2014; pp. 995–999. [Google Scholar]
- Doughmi, Y.; Idrissi, N.; Hbali, Y. Real-Time System for Driver Fatigue Detection Based on a Recurrent Neuronal Network. J. Imaging 2020, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Gao, Z.; Li, Y.; Cai, Q.; Marwan, N.; Kurths, J. A Complex Network-Based Broad Learning System for Detecting Driver Fatigue From EEG Signals. IEEE Trans. Syst. Man Cybernet. Syst. 2019, 1–9. [Google Scholar] [CrossRef]
- Shalash, W. Driver Fatigue Detection with Single EEG Channel Using Transfer Learning. In Proceedings of the IEEE International Conference on Imaging System and Techniques, Abu Dabi, United Arab Emirates, 9–10 December 2019. [Google Scholar]
- Zeng, H.; Yang, C.; Dai, G.; Qin, F.; Zhang, J.; Kong, W. EEG classification of driver mental states by deep learning. Cogn. Neurodyn. 2018, 12, 597–606. [Google Scholar] [CrossRef]
- Ko, W.; Oh, K.; Jeon, E.; Suk, H. VIGNet: A Deep Convolutional Neural Network for EEG-based Driver Vigilance Estimation. In Proceedings of the 8th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Korea, 26–28 February 2020; pp. 1–3. [Google Scholar]
- Cheng, E.; Young, K.; Lin, C. Image-based EEG signal processing for driving fatigue prediction. In Proceedings of the 2018 International Automatic Control Conference (CACS), Taoyuan, Taiwan, 4–7 November 2018; pp. 1–5. [Google Scholar]
- Rahman, K.; Mustaffa, M.; Fuad, N.; Ahmad, M.; Ahad, R. Body Motion Control via Brain Signal Response. In Proceedings of the IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, 3–6 December 2018; pp. 696–700. [Google Scholar]
- Sánchez-Reolid, R.; García, A.; Vicente-Querol, M.; Fernández-Aguilar, L.; López, M.; Fernández-Caballero, A.; González, P. Artificial Neural Networks to Assess Emotional States from Brain-Computer Interface. Electronics 2018, 7, 384. [Google Scholar] [CrossRef] [Green Version]
- Pedrosa, P.; Fiedler, P.; Schinaia, L.; Vasconcelos, B.; Martins, A.; Amaral, M.; Comani, S.; Haueisen, J.; Fonseca, C. Alginate-based hydrogels as an alternative to electrolytic gels for rapid EEG monitoring and easy cleaning procedures. Sens. Actuators B Chem. 2017, 247, 231–237. [Google Scholar] [CrossRef]
- Towle, V.; Bolafios, J.; Suarez, D.; Tan, K.; Grzeszczuk, R.; Levin, D.; Cakmur, R.; Frank, S.; Spire, J. The spatial location of EEG electrodes: Locating the best-fitting sphere relative to cortical anatomy. Electroencephalogr. Clin. Neurophysiol. 1993, 86, 1–6. [Google Scholar] [CrossRef]
- Hu, S.; Zheng, G.; Peters, B. Driver fatigue detection from electroencephalogram spectrum after electrooculography artefact removal. Intell. Transp. Syst. IET 2013, 7, 105–113. [Google Scholar] [CrossRef]
- Mohammedi, M.; Omar, M.; Bouabdallah, A. Automatic removal of ocular artifacts in EEG signals for driver’s drowsiness detection: A survey. In Proceedings of the 2018 International Conference on Smart Communications in Network Technologies (SaCoNeT), El Oued, Algeria, 27–31 October 2018; pp. 188–193. [Google Scholar]
- Gebodh, N.; Esmaeilpour, Z.; Adair, D.; Chelette, K.; Dmochowski, J.; Woods, A.; Kappenman, E.; Parra, L.; Bikson, M. Inherent physiological artifacts in EEG during tDCS. Neuroimage 2018, 185, 408–424. [Google Scholar] [CrossRef]
- Laruelo, A.; Chaari, L.; Batatia, H.; Ken, S.; Rowland, B.; Tourneret, J.Y.; Laprie, A. Hybrid Sparse Regularization for Magnetic Resonance Spectroscopy. In Proceedings of the IEEE International Conference of Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 3–7. [Google Scholar]
- Chaari, L.; Tourneret, J.Y.; Chaux, C. Sparse signal recovery using a Bernouilli generalized Gaussian prior. In Proceedings of the European Signal Processing Conference (EUSIPCO), Nice, France, 31 August–4 September 2015. [Google Scholar]
- Sevgi, L. Numerical Fourier Transforms: DFT and FFT. IEEE Antennas Propag. Mag. 2007, 49, 238–243. [Google Scholar] [CrossRef]
- Ludwig, P.; Varacallo, M. Neuroanatomy, Central Nervous System (CNS). Available online: https://www.researchgate.net/publication/329717386_Neuroanatomy_Central_Nervous_System_CNS (accessed on 15 January 2021).
- Teplan, M. Fundamental of EEG Measurement. Meas. Sci. Rev. 2002, 2, 1–11. [Google Scholar]
- Al-Kadi, M.I.; Reaz, M.B.I.; Ali, M.A. Evolution of Electroencephalogram Signal Analysis Techniques during Anesthesia. Sensors 2013, 13, 6605–6635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schütze, M.D.; Junghanns, K. The Difficulty of Staying Awake During Alpha/Theta Neurofeedback Training. Appl. Psychophysiol. Biofeedback 2015, 40, 85–94. [Google Scholar] [CrossRef]
- Amo, C.; de Santiago, L.; Barea, R.; López-Dorado, A.; Boquete, L. Analysis of Gamma-Band Activity from Human EEG Using Empirical Mode Decomposition. Sensors 2017, 17, 989. [Google Scholar]
- Dkhil, M.B.; Wali, A.; Alimi, A.M. Drowsy Driver Detection by EEG Analysis Using Fast Fourier Transform. arXiv 2018, arXiv:1806.07286v1. [Google Scholar]
- Ogino, M.; Mitsukura, Y. Portable Drowsiness Detection through Use of a Prefrontal Single-Channel Electroencephalogram. Sensors 2018, 18, 4477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.T.; Wu, R.C.; Liang, S.; Chao, W.H.; Chen, Y.J.; Jung, T.P. EEG-based drowsiness estimation for safety driving using independent component analysis. IEEE Trans. Circuits Syst. I Regul. Pap. 2005, 52, 2726–2738. [Google Scholar]
- Makeig, S.; Jung, T.; Sejnowski, T. Awareness during drowsiness: Dynamics and electrophysiological correlates. Can. J. Exp. Psychol. 2000, 54, 266–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subasi, A. Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients. Expert Syst. Appl. 2005, 28, 701–711. [Google Scholar] [CrossRef]
- Kar, S.; Bhagat, M.; Routray, A. EEG signal analysis for the assessment and quantification of driver’s fatigue. Transp. Res. Part F Traffic Psychol. Behav. 2010, 13, 297–306. [Google Scholar] [CrossRef]
- Bernardi, G.; Betta, M.; Ricciardi, E.; Pietrini, P.; Tononi, G.; Siclari, F. Regional Delta Waves In Human Rapid Eye Movement Sleep. J. Neurosci. 2019, 39, 2686–2697. [Google Scholar] [CrossRef] [Green Version]
- Lashgari, E.; Liang, D.; Maoz, U. Data Augmentation for Deep-Learning-Based Electroencephalography. J. Neurosci. Methods 2020, 346, 108885. [Google Scholar] [CrossRef]
- Zhang, Z.; Casals, J.; Cichocki, A. A Novel Deep Learning Approach with Data Augmentation to Classify Motor Imagery Signals. IEEE Access 2019, 7, 5945–15954. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Liu, Y.; Zhang, Y.; Han, B.; Zhou, F. Integration of 24 Feature Types to Accurately Detect and Predict Seizures Using Scalp EEG Signals. Sensors 2018, 18, 1372. [Google Scholar] [CrossRef] [Green Version]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Garcia, A.; Peter, K. Further advantages of data augmentation on convolutional neural networks. In Proceedings of the 27th International Conference on Artificial Neural Networks, Rhodes, Greece, 27 September 2018; pp. 95–103. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Hammad, M.; Pławiak, P.; Wang, K.; Acharya, U.R. ResNet-Attention model for human authentication using ECG signals. Expert Syst. 2020, 1, e12547. [Google Scholar] [CrossRef]
- Oh, S.; Jahmunah, V.; Ooi, C.; Tan, R.; Ciaccio, E.; Yamakawa, T.; Tanabe, M.; Kobayashi, M.; Acharya, U. Classification of heart sound signals using a novel deep WaveNet model. Comput. Methods Programs Biomed. 2020, 196, 105604. [Google Scholar] [CrossRef]
- Kim, J.; Seo, S.; Song, C.; Kim, K. Assessment of Electrocardiogram Rhythms by GoogLeNet Deep Neural Network Architecture. J. Healthc. Eng. 2019, 2019, 2826901. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kim, J.; Jung, S.; Gil, Y.; Choi, J.; Son, H. ECG-Signal Multi-Classification Model Based on Squeeze-and-Excitation Residual Neural Networks. Appl. Sci. 2020, 10, 6495. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Wang, Y.; Wang, S. Time-ResNeXt for epilepsy recognition based on EEG signals in wireless networks. EURASIP J. Wireless Commun. Netw. 2020, 2020, 195. [Google Scholar] [CrossRef]
- Uyulan, C.; Ergüzel, T.; Unubol, H.; Cebi, M.; Sayar, G.; Asad, M.; Tarhan, N. Major Depressive Disorder Classification Based on Different Convolutional Neural Network Models: Deep Learning Approach. Clin. EEG Neurosci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Shon, D.; Im, K.; Choi, H.; Yoo, D.; Kim, J. Sleep State Classification Using Power Spectral Density and Residual Neural Network with Multichannel EEG Signals. Appl. Sci. 2020, 10, 7639. [Google Scholar] [CrossRef]
- Nahid, N.; Rahman, A.; Ahad, M.A.R. Deep Learning Based Surface EMG Hand Gesture Classification for Low-Cost Myoelectric Prosthetic Hand. In Proceedings of the 9th International Conference on Informatics, Electronics & Vision (ICIEV) and 2020 4th International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu, Japan, 26–29 August 2020. [Google Scholar]
- Wulan, N.; Wang, W.; Sun, P.; Wang, K.; Xia, Y.; Zhang, H. Generating electrocardiogram signals by deep learning. Neurocomputing 2020, 404, 122–136. [Google Scholar] [CrossRef]
- Zhu, T.; Luo, W.; Yu, F. Convolution- and Attention-Based Neural Network for Automated Sleep Stage Classification. Int. J. Environ. Res. Public Health 2020, 17, 4152. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Liu, F.; Tan, H.; Song, D.; Shu, W.; Li, W.; Zhou, Y.; Bo, X.; Xie, Z. Deep Learning and Its Applications in Biomedicine. Genom. Proteom. Bioinform. 2018, 16, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.; Waris, A.; Gilani, S.; Jochumsen, M.; Niazi, I.K.; Jamil, M.; Farina, D.; Kamavuako, E. Multiday EMG-Based Classification of Hand Motions with Deep Learning Techniques. Sensors 2018, 18, 2497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J. Comparison of Different Features and Classifiers for Driver Fatigue Detection Based on a Single EEG Channel. Comput. Math. Methods Med. 2017, 2017, 5109530. [Google Scholar] [CrossRef]
- Morales, J.; Saldaña, R.; Castolo, M.; Borrayo, C.C.E.; Ruiz, A.; Perez, H.; Ruiz, G. Deep Learning for the Classification of Genomic Signals. Comput. Intell. Image Process. 2020, 2020, 7698590. [Google Scholar]
- Srinivasan, V.; Islam, M.; Zhang, W.; Ren, H. Finger Movement Classification from Myoelectric Signals Using Convolutional Neural Networks. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018; pp. 1070–1075. [Google Scholar]
- Choi, I.; Kim, H. An On-Device Deep Learning Approach to Battery Saving on Industrial Mobile Terminals. Sensors 2020, 20, 4044. [Google Scholar] [CrossRef]
- Buslaev, A.; Iglovikov, V.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A. Albumentations: Fast and flexible image augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Somrak, M.; Džeroski, S.; Kokalj, T. Learning to Classify Structures in ALS-Derived Visualizations of Ancient Maya Settlements with CNN. Remote Sens. 2020, 12, 2215. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037. [Google Scholar]
- Predescu, A.; Truica, C.; Apostol, E.; Mocanu, M.; Lupu, C. An Advanced Learning-Based Multiple Model Control Supervisor for Pumping Stations in a Smart Water Distribution System. Mathematics 2020, 8, 887. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K. Plant Disease Classification: A Comparative Evaluation of Convolutional Neural Networks and Deep Learning Optimizers. Plants 2020, 9, 1319. [Google Scholar] [CrossRef]
- Li, G.; Lee, C.; Jung, J.; Youn, Y.; Camacho, D. Deep learning for EEG data analytics: A survey. Concurr. Comput. Pract. Exp. 2019, 32, e5199. [Google Scholar] [CrossRef]
- Shaf, A.; Ali, T.; Farooq, W.; Javaid, S.; Draz, U.; Yasin, S. Two Classes Classification Using Different Optimizers in Convolutional Neural Network. In Proceedings of the 2018 IEEE 21st International Multi-Topic Conference (INMIC), Karachi, Pakistan, 1–2 November 2018; pp. 1–6. [Google Scholar]
- Tafsast, A.; Ferroudji, K.; Hadjili, M.; Bouakaz, A.; Benoudjit, N. Automatic Microemboli Characterization Using Convolutional Neural Networks and Radio Frequency Signals. In Proceedings of the International Conference on Communications and Electrical Engineering (ICCEE), El Oued, Algeria, 17–18 December 2018; pp. 1–4. [Google Scholar]
- Jogin, M.; Madhulika, M.S.; Divya, G.D.; Meghana, R.K.; Apoorva, S. Feature Extraction using Convolution Neural Networks (CNN) and Deep Learning. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; pp. 2319–2323. [Google Scholar]
- Garbin, C.; Zhu, X.; Marques, O. Dropout vs. batch normalization: An empirical study of their impact to deep learning. Multimed. Tools Appl. 2020, 79, 1–39. [Google Scholar] [CrossRef]
- Bisong, E. Building Machine Learning and Deep Learning Models on Google Cloud Platform; Springer: Berlin/Heidelberg, Germany, 2019; pp. 59–64. [Google Scholar]
- Sarno, R.; Nugraha, B.; Munawar, M. Real Time Fatigue-Driver Detection from Electroencephalography Using Emotiv EPOC+. Int. Rev. Comput. Softw. IRECOS 2016, 11, 214. [Google Scholar] [CrossRef]
- Blaiech, H.; Neji, M.; Wali, A.; Alimi, A. Emotion recognition by analysis of EEG signals. In Proceedings of the 13th International Conference on Hybrid Intelligent Systems, Arlington, VA, USA, 6–10 November 2013; pp. 312–318. [Google Scholar]
- Nugraha, B.; Sarno, R.; Asfani, D.; Igasaki, T.; Munawar, M. Classification of driver fatigue state based on EEG using Emotiv EPOC+. J. Theor. Appl. Inf. Technol. 2016, 86, 347–359. [Google Scholar]
- Huang, R.S.; Jung, T.P.; Makeig, S. Tonic Changes in EEG Power Spectra during Simulated Driving. In International Conference on Foundations of Augmented Cognition; Springer: Berlin, Germany, 2009; pp. 394–403. [Google Scholar]
- Majumder, S.; Guragain, B.; Wang, C.; Wilson, N. On-board Drowsiness Detection using EEG: Current Status and Future Prospects. In Proceedings of the IEEE International Conference on Electro Information Technology (EIT), Brookings, SD, USA, 20–22 May 2019; pp. 483–490. [Google Scholar]
- Zhang, H.; Silva, F.; Ohata, E.; Medeiros, A.; Filho, P. Bi-Dimensional Approach Based on Transfer Learning for Alcoholism Pre-disposition Classification via EEG Signals. Front. Hum. Neurosci. 2020, 14, 365. [Google Scholar] [CrossRef]
- Trejo, L.; Kubitz, K.; Rosipal, R.; Kochavi, R.; Montgomery, L. EEG-Based Estimation and Classification of Mental Fatigue. Psychology 2015, 6, 572–589. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Wang, Y.; Luo, C. EEG-Based Real-Time Drowsiness Detection Using Hilbert-Huang Transform. In Proceedings of the 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015; pp. 195–198. [Google Scholar]
- Awais, M.; Badruddin, N.; Drieberg, M. A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability. Sensors 2017, 17, 1991. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Ahn, S.; Jang, H.; Jun, S.C.; Kim, J.G. Utilization of a combined EEG/NIRS system to predict driver drowsiness. Sci. Rep. 2017, 7, 43933. [Google Scholar]
- Noori, S.; Mikaeili, M. Driving Drowsiness Detection Using Fusion of Electroencephalography, Electrooculography, and Driving Quality Signals. J. Med. Signal. Sens. 2016, 6, 39–46. [Google Scholar]
Characteristics | EEG Headset |
---|---|
Number of channels | 14 (plus 2 references CMS and DRL) |
Channel names | AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4 |
Sampling rate | 128 SPS (2048 Hz internal) |
Sampling method | Sequential sampling |
Bandwidth | 0.2–45 Hz, Digital notch filters at 50 Hz and 60 Hz |
Resolution | 14 bits |
Filtration | Sinc filter |
Dynamic range | 8400 µV (microvolts) |
Brainwaves | Description | Frequency Interval | Location |
---|---|---|---|
Gamma | Refers to hyper-vigilance state | >30 Hz | — |
Beta | Refers to alert state | 13 to 30 Hz | Frontal and Central |
Alpha | Refers to waking state | 8 to 13 Hz | Frontal and Occipital |
Theta | Refers to the half-sleep | 4 to 7 Hz | Temporal and Median |
Alpha-Theta | Refers to waking and relaxation states | 5 to 9 Hz | Temporal and Occipital |
Delta | Refers to consciousness and sleep states | 0.5 to 4 Hz | Frontal lobe |
CNNs Architectures | ResNet | Inception | WaveNet | Simple CNN | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
References | [86,87,88,89,90] | [96,97] | [84,91] | [42,92,93,94,95] | ||||||||
States number | 2 | 3 | 4 | 2 | 3 | 4 | 2 | 3 | 4 | 2 | 3 | 4 |
Complexity | 0 | 0 | 0.33 | 0 | 0 | 0.33 | 0 | 0 | 0.33 | 1 | 1 | 1 |
Performance | 1 | 1 | 0.66 | 0 | 0.33 | 0.5 | 1 | 0.5 | 0.66 | 1 | 1 | 1 |
Time-consumption | 0 | 0.5 | 0.66 | 0 | 0.5 | 0.66 | 1 | 0.5 | 0.66 | 1 | 0.5 | 0.66 |
1D-dimension | 1 | 1 | 0.66 | 0 | 0.5 | 0.66 | 1 | 1 | 1 | 1 | 1 | 1 |
Total | 2 | 2.5 | 2.31 | 0 | 1.33 | 2.15 | 3 | 2 | 2.65 | 4 | 3.5 | 3.66 |
Parameters | Role |
---|---|
Filters | Feature extraction |
Kernel size | Convolutional window specification |
Kernel initializer | Initialization of all values |
Activation | Applied after performing the convolution |
Participants | Morning | Afternoon | Evening |
---|---|---|---|
P1 (26 years) | Drowsy | Drowsy | Drowsy |
P2 (46 years) | Awake | Drowsy | Awake |
P3 (37 years) | Drowsy | Drowsy | Drowsy |
P4 (35 years) | Drowsy | Drowsy | Drowsy |
P5 (64 years) | Drowsy | Drowsy | Awake |
P6 (62 years) | Awake | Drowsy | Drowsy |
P7 (53 years) | Drowsy | Drowsy | Drowsy |
P8 (63 years) | Awake | Awake | Awake |
P9 (59 years) | Drowsy | Awake | Awake |
P10 (24 years) | Drowsy | Drowsy | Awake |
P11 (17 years) | Drowsy | Awake | Drowsy |
P12 (22 years) | Drowsy | Drowsy | Drowsy |
P13 (14 years) | Drowsy | Drowsy | Drowsy |
P14 (43 years) | Awake | Awake | Drowsy |
Participants | Morning | Afternoon | Evening |
---|---|---|---|
Layer Num | Type | Output Shape | Parameters |
Layer 1 | Batch Normalization | (None, 256, 2) | 1024 |
Layer 2 | Conv 1D | (None, 256, 512) | 33,280 |
Layer 3 | Conv 1D | (None, 256, 512) | 8,389,120 |
Layer 4 | Batch Normalization | (None, 256, 512) | 2048 |
Layer 5 | Dropout | (None, 256, 512) | 0 |
Layer 6 | Conv 1DN | (None, 256, 256) | 4,194,560 |
Layer 7 | Batch Normalization | (None, 256, 256) | 1024 |
Layer 8 | Dropout | (None, 256, 256) | 0 |
Layer 9 | Batch Normalization | (None, 256, 256) | 1024 |
Layer 10 | Conv 1D | (None, 256, 256) | 2,097,408 |
Layer 11 | Batch Normalization | (None, 256, 256) | 1024 |
Layer 12 | Maxpool 1D | (None, 2, 256) | 0 |
Layer 13 | Dropout | (None, 2, 256) | 0 |
Layer 14 | Flatten | (None, 512) | 0 |
Layer 15 | Dense | (None, 128) | 65,664 |
Layer 16 | Batch Normalization | (None,128) | 512 |
Layer 17 | Dropout | (None, 128) | 0 |
Layer 18 | Batch Normalization | (None, 128) | 512 |
Layer 19 | Dense | (None, 1) | 129 |
Number of Electrods | 2 | 4 | 7 | 14 |
---|---|---|---|---|
Accuracy train | 78.20% | 85.82% | 88.22% | 90.46% |
Accuracy Validation | 74.33% | 80.09% | 86.30% | 87.95% |
Accuracy test | 68.79% | 54.14% | 72.41% | 79.43% |
Number of Electrods | 2 | 4 | 7 | 14 |
---|---|---|---|---|
Accuracy train | 94.30% | 97.25% | 98.88% | 93.69% |
Accuracy Validation | 78.14% | 86.06% | 93.27% | 89.22% |
Accuracy test | 77.41% | 78.49% | 90.14% | 82.07% |
Run | 1 | 2 | 3 | Average Accuracy |
---|---|---|---|---|
Accuracy train | 98.94% | 98.90% | 98.81 % | 98.88% |
Accuracy Validation | 92.15% | 93.88% | 93.79% | 93.27% |
Accuracy test | 90.01% | 90% | 90.42% | 90.14% |
Train and Validation Sets | 80%, 20% | 60%, 40% | 40%, 60% | 20%, 80% |
---|---|---|---|---|
Accuracy train | 98.94% | 98.81 % | 98.66% | 98.83% |
Accuracy Validation | 92.15% | 89.82% | 88.32% | 89.48% |
Accuracy test | 90.01% | 88.20% | 84.94% | 84.96% |
Models | Proposed CNN | Inception | Resnet | Wavenet |
---|---|---|---|---|
Accuracy train | 98.88% | 88.91% | 79.03% | 71.54% |
Accuracy Validation | 93.27% | 67.70% | 69.86% | 67.40% |
Accuracy test | 90.14% | 74.87% | 72.80% | 75% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaabene, S.; Bouaziz, B.; Boudaya, A.; Hökelmann, A.; Ammar, A.; Chaari, L. Convolutional Neural Network for Drowsiness Detection Using EEG Signals. Sensors 2021, 21, 1734. https://doi.org/10.3390/s21051734
Chaabene S, Bouaziz B, Boudaya A, Hökelmann A, Ammar A, Chaari L. Convolutional Neural Network for Drowsiness Detection Using EEG Signals. Sensors. 2021; 21(5):1734. https://doi.org/10.3390/s21051734
Chicago/Turabian StyleChaabene, Siwar, Bassem Bouaziz, Amal Boudaya, Anita Hökelmann, Achraf Ammar, and Lotfi Chaari. 2021. "Convolutional Neural Network for Drowsiness Detection Using EEG Signals" Sensors 21, no. 5: 1734. https://doi.org/10.3390/s21051734
APA StyleChaabene, S., Bouaziz, B., Boudaya, A., Hökelmann, A., Ammar, A., & Chaari, L. (2021). Convolutional Neural Network for Drowsiness Detection Using EEG Signals. Sensors, 21(5), 1734. https://doi.org/10.3390/s21051734