Bismuth Film-Coated Gold Ultramicroelectrode Array for Simultaneous Quantification of Pb(II) and Cd(II) by Square Wave Anodic Stripping Voltammetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Electrochemical Device
2.3. In Situ Electrodeposition of Bismuth
2.4. Electroanalytical Methods
3. Results and Discussion
3.1. Effect of Experimental Variables
3.1.1. Preconcentration Time
3.1.2. Bi(III) Concentration
3.1.3. Bi(III)-to-Metal Ion Ratio
3.1.4. Acetate Buffer Concentration
3.1.5. pH
3.2. Effect of SWASV Parameters
3.2.1. Square Wave Frequency
3.2.2. Square Wave Amplitude
3.2.3. Square Wave Step Potential
3.3. Interference Study
3.4. Optimization of the SWASV Parameters
1.50 AC − 0.66 BC − 2.750 × 10−3 A2 + 6.37 B2 + 5.42 C2
2.37 BC − 4.54 A2 − 0.90 B2 − 1.50 C2
0.25 FSI − 0.014 ASI − 6.88 × 10−4 F2 + 0.028 A2 + 0.60 SI2
0.33 FSI + 0.053 ASI − 1.13 F2 − 4.01 × 10−3 A2 − 0.17 SI2
3.5. Analytical Performance of BF-UMEA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vareda, J.P.; Valente, A.J.; Durães, L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef]
- Maurya, P.K.; Malik, D.; Yadav, K.K.; Kumar, A.; Kumar, S.; Kamyab, H. Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: Possible human health risks evaluation. Toxicol. Rep. 2019, 6, 472–481. [Google Scholar] [CrossRef]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Ge, J.; Huo, X.; Zhang, Y.; Lau, A.T.; Xu, X. Differential proteomic expression of human placenta and fetal development following e-waste lead and cadmium exposure in utero. Sci. Total Environ. 2016, 550, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Cotruvo, J.A. 2017 WHO guidelines for drinking water quality: First addendum to the fourth edition. J. Am. Water Work. Assoc. 2017, 109, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef]
- Mamaril, G.S.S.; De Luna, M.D.G.; Bindumadhavan, K.; Ong, D.C.; Pimentel, J.A.I.; Doong, R.-A. Nitrogen and fluorine co-doped 3-dimensional reduced graphene oxide architectures as high-performance electrode material for capacitive deionization of copper ions. Sep. Purif. Technol. 2020, 117559, 117559. [Google Scholar] [CrossRef]
- Yee, J.-J.; Arida, C.V.J.; Futalan, C.M.; De Luna, M.D.G.; Wan, M.-W. Treatment of contaminated groundwater via arsenate removal using chitosan-coated bentonite. Molecules 2019, 24, 2464. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhong, S.; Fang, K.; Qian, Z.; Chen, J. Determination of cadmium(II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry. J. Hazard. Mater. 2012, 239-240, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Guenang, L.S.; Gupta, P.; Basseto, V.C.; Jovic, M.; Ymélé, E.; Lesch, A.; Girault, H.; Tonlé, I.K. Oxygen plasma/Bismuth modified inkjet printed graphene electrode for the sensitive simultaneous detection of lead and cadmium. Am. J. Anal. Chem. 2020, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pacquiao, M.R.; De Luna, M.D.G.; Thongsai, N.; Kladsomboon, S.; Paoprasert, P. Highly fluorescent carbon dots from enokitake mushroom as multi-faceted optical nanomaterials for Cr6+ and VOC detection and imaging applications. Appl. Surf. Sci. 2018, 453, 192–203. [Google Scholar] [CrossRef]
- Jovanovski, V.; Hrastnik, N. Insights into the anodic stripping voltammetric behaviour of copper film electrodes for determination of trace mercury. Microchem. J. 2019, 146, 895–899. [Google Scholar] [CrossRef]
- Rutyna, I.; Korolczuk, M. Determination of lead and cadmium by anodic stripping voltammetry at bismuth film electrodes following double deposition and stripping steps. Sens. Actuators B Chem. 2014, 204, 136–141. [Google Scholar] [CrossRef]
- Sánchez-Calvo, A.; Blanco-López, M.C.; Costa-García, A. Paper-based working electrodes coated with mercury or bismuth films for heavy metals determination. Biosensors 2020, 10, 52. [Google Scholar] [CrossRef]
- Bindewald, E.H.; Angelo, E.; Kleinert, E.; Bergamini, M.F.; Marcolino-Junior, L.H. Mercury isles in titanate nanotubes: A new strategy for using mercury electrodes in analytical application. Mon. Chem. Chem. Month. 2020, 151, 1485–1491. [Google Scholar] [CrossRef]
- Arduini, F.; Calvo, J.Q.; Palleschi, G.; Moscone, D.; Amine, A. Bismuth-modified electrodes for lead detection. TrAC Trends Anal. Chem. 2010, 29, 1295–1304. [Google Scholar] [CrossRef]
- Jovanovski, V.; Hočevar, S.B.; Ogorevc, B. Bismuth electrodes in contemporary electroanalysis. Curr. Opin. Electrochem. 2017, 3, 114–122. [Google Scholar] [CrossRef]
- Domańska, K.; Tyszczuk-Rotko, K. Integrated three-electrode screen-printed sensor modified with bismuth film for voltammetric determination of thallium(I) at the ultratrace level. Anal. Chim. Acta 2018, 1036, 16–25. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, J.; Dai, W.; Lin, X.; Ye, J.; Ye, J. A screen-printed carbon electrode modified with a bismuth film and gold nanoparticles for simultaneous stripping voltammetric determination of Zn(II), Pb(II) and Cu(II). Microchim. Acta 2017, 184, 4731–4740. [Google Scholar] [CrossRef]
- Rojas-Romo, C.; Serrano, N.; Ariño, C.; Arancibia, V.; Díaz-Cruz, J.M.; Esteban, M. Determination of Sb(III) using an ex-situ bismuth screen-printed carbon electrode by adsorptive stripping voltammetry. Talanta 2016, 155, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, G.-H.; Han, W.-K.; Park, J.-S.; Kang, S.-G. An electrochemical sensor based on the reduction of screen-printed bismuth oxide for the determination of trace lead and cadmium. Sens. Actuators B Chem. 2008, 135, 309–316. [Google Scholar] [CrossRef]
- Hočevar, S.B.; Daniele, S.; Bragato, C.; Ogorevc, B. Reactivity at the film/solution interface of ex situ prepared bismuth film electrodes: A scanning electrochemical microscopy (SECM) and atomic force microscopy (AFM) investigation. Electrochim. Acta 2007, 53, 555–560. [Google Scholar] [CrossRef]
- Quintana, J.C.; Arduini, F.; Amine, A.; Punzo, F.; Destri, G.L.; Bianchini, C.; Zane, D.; Curulli, A.; Palleschi, G.; Moscone, D. Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection. Anal. Chim. Acta 2011, 707, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Hwang, G.H.; Han, W.K.; Park, J.S.; Kang, S.G. Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 2008, 76, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo-Filho, L.C.S.; Janegitz, B.C.; Fatibelilo-Filho, O.; Marcolino-Junior, L.H.; Banks, C.E. Inexpensive and disposable copper mini-sensor modified with bismuth for lead and cadmium determination using square-wave anodic stripping voltammetry. Anal. Methods 2013, 5, 202–207. [Google Scholar] [CrossRef]
- Orozco, J.; Fernández-Sánchez, C.; Jiménez-Jorquera, C. Ultramicroelectrode array based sensors: A promising analytical tool for environmental monitoring. Sensors 2010, 10, 475–490. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A. Microfabricated chip integrating a bismuth microelectrode array for the determination of trace cobalt(II) by adsorptive cathodic stripping voltammetry. Sens. Actuators B Chem. 2016, 229, 362–369. [Google Scholar] [CrossRef]
- Xie, X.; Stüben, D.; Berner, Z.; Albers, J.; Hintsche, R.; Jantzen, E. Development of an ultramicroelectrode arrays (UMEAs) sensor for trace heavy metal measurement in water. Sens. Actuators B Chem. 2004, 97, 168–173. [Google Scholar] [CrossRef]
- Thanh, N.M.; Van Hop, N.; Luyen, N.D.; Phong, N.H.; Toan, T.T.T. Simultaneous determination of Zn(II), CD(II), Pb(II), and CU(II) Using differential pulse anodic stripping voltammetry at a bismuth film-modified electrode. Adv. Mater. Sci. Eng. 2019, 2019, 1826148. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Romo, C.; Aliaga, M.E.; Arancibia, V.; Gomez, M. Determination of Pb(II) and Cd(II) via anodic stripping voltammetry using an in-situ bismuth film electrode. Increasing the sensitivity of the method by the presence of Alizarin Red S. Microchem. J. 2020, 159, 105373. [Google Scholar] [CrossRef]
- Baldrianova, L.; Svancara, I.; Economou, A.; Sotiropoulos, S. Anodic stripping voltammetry at in situ bismuth-plated carbon and gold microdisc electrodes in variable electrolyte content unstirred solutions. Anal. Chim. Acta 2006, 580, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Baldrianova, L.; Svancara, I.; Vlček, M.; Economou, A.; Sotiropoulos, S. Effect of Bi(III) concentration on the stripping voltammetric response of in situ bismuth-coated carbon paste and gold electrodes. Electrochim. Acta 2006, 52, 481–490. [Google Scholar] [CrossRef]
- Pandey, S.K.; Sachan, S.; Singh, S.K. Ultra-trace sensing of cadmium and lead by square wave anodic stripping voltammetry using ionic liquid modified graphene oxide. Mater. Sci. Energy Technol. 2019, 2, 667–675. [Google Scholar] [CrossRef]
- Kachoosangi, R.T.; Banks, C.E.; Ji, X.; Compton, R.G. Electroanalytical determination of cadmium(II) and lead(II) Using an in-situ bismuth film modified edge plane pyrolytic graphite electrode. Anal. Sci. 2007, 23, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Demetriades, D.; Economou, A.; Voulgaropoulos, A. A study of pencil-lead bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Anal. Chim. Acta 2004, 519, 167–172. [Google Scholar] [CrossRef]
- Kefala, G. A study of bismuth-film electrodes for the detection of trace metals by anodic stripping voltammetry and their application to the determination of Pb and Zn in tapwater and human hair. Talanta 2003, 61, 603–610. [Google Scholar] [CrossRef]
- Cao, L.; Jia, J.; Wang, Z. Sensitive determination of Cd and Pb by differential pulse stripping voltammetry with in situ bismuth-modified zeolite doped carbon paste electrodes. Electrochim. Acta 2008, 53, 2177–2182. [Google Scholar] [CrossRef]
- Hočevar, S.B.; Ogorevc, B.; Wang, J.; Pihlar, B. A study on operational parameters for advanced use of bismuth film electrode in anodic stripping voltammetry. Electroanalysis 2002, 14, 1707–1712. [Google Scholar] [CrossRef]
- Liu, B.; Lu, L.; Wang, M.; Zi, Y. A study of nafion-coated bismuth-film electrode for the determination of zinc, lead, and cadmium in blood samples. Electroanalysis 2008, 20, 2363–2369. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Yang, Z.; Xu, Q.; Hou, C.; Peng, J.; Hu, X. Simultaneous determination of ultratrace lead and cadmium by square wave stripping voltammetry with in situ depositing bismuth at Nafion-medical stone doped disposable electrode. J. Hazard. Mater. 2011, 191, 26–31. [Google Scholar] [CrossRef]
- Shi, E.; Yu, G.; Lin, H.; Liang, C.; Zhang, T.; Zhang, F.; Qu, F. The incorporation of bismuth(III) into metal-organic frameworks for electrochemical detection of trace cadmium(II) and lead(II). Microchim. Acta 2019, 186, 451. [Google Scholar] [CrossRef] [PubMed]
- Švancara, I.; Baldrianova, L.; Tesařová, E.; Hočevar, S.B.; Elsuccary, S.A.A.; Economou, A.; Sotiropoulos, S.; Ogorevc, B.; Vytřas, K. Recent advances in anodic stripping voltammetry with bismuth-modified carbon paste electrodes. Electroanalisys 2006, 18, 177–185. [Google Scholar] [CrossRef]
- Ping, J.; Wang, Y.; Wu, J.; Ying, Y. Development of an electrochemically reduced graphene oxide modified disposable bismuth film electrode and its application for stripping analysis of heavy metals in milk. Food Chem. 2014, 151, 65–71. [Google Scholar] [CrossRef]
- Kadara, R.O.; Tothill, I.E. Stripping chronopotentiometric measurements of lead(II) and cadmium(II) in soils extracts and wastewaters using a bismuth film screen-printed electrode assembly. Anal. Bioanal. Chem. 2004, 378, 770–775. [Google Scholar] [CrossRef]
- Wu, H.P. Dynamics and performance of fast linear scan anodic stripping voltammetry of CD, Pb, and CU using in situ-generated ultrathin mercury films. Anal. Chem. 1996, 68, 1639–1645. [Google Scholar] [CrossRef]
- Kadara, R.O.; Tothill, I.E. Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples. Anal. Chim. Acta 2008, 623, 76–81. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J.; Kirgöz, Ü.A.; Hocevar, S.B.; Ogorevc, B. Insights into the anodic stripping voltammetric behavior of bismuth film electrodes. Anal. Chim. Acta 2001, 434, 29–34. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, H.; Liu, G.; Wang, Z.; Cheng, J. Simultaneous determination of trace Cd(II) and Pb(II) based on Bi/Nafion/reduced graphene oxide-gold nanoparticle nanocomposite film-modified glassy carbon electrode by one-step electrodeposition. Ionics 2017, 23, 767–777. [Google Scholar] [CrossRef]
- Kadara, O.R.; Tothill, O.I. Resolving the copper interference effect on the stripping chronopotentiometric response of lead(II) obtained at bismuth film screen-printed electrode. Talanta 2005, 66, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jing, G.; Cui, T. Nafion coated flexible bismuth sensor for trace lead and cadmium determination. Microsyst. Technol. 2018, 24, 3697–3704. [Google Scholar] [CrossRef]
- Cruz, M.I.S.D.; Thongsai, N.; De Luna, M.D.G.; In, I.; Paoprasert, P. Preparation of highly photoluminescent carbon dots from polyurethane: Optimization using response surface methodology and selective detection of silver (I) ion. Colloids Surf. A Physicochem. Eng. Asp. 2019, 568, 184–194. [Google Scholar] [CrossRef]
- Lu, Z.; Dai, W.; Lin, X.; Liu, B.; Zhang, J.; Ye, J.; Ye, J. Facile one-step fabrication of a novel 3D honeycomb-like bismuth nanoparticles decorated N-doped carbon nanosheet frameworks: Ultrasensitive electrochemical sensing of heavy metal ions. Electrochim. Acta 2018, 266, 94–102. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, H.; Zhou, S.; Song, T.; Wang, H.; Li, S.; Gan, W.; Yuan, Q. Simultaneous detection of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/Nafion/bismuth-film electrode. Electrochim. Acta 2014, 143, 143–151. [Google Scholar] [CrossRef]
- Lin, X.; Lu, Z.; Dai, W.; Liu, B.; Zhang, Y.; Li, J.; Ye, J. Laser engraved nitrogen-doped graphene sensor for the simultaneous determination of Cd(II) and Pb(II). J. Electroanal. Chem. 2018, 828, 41–49. [Google Scholar] [CrossRef]
- Castañeda, M.T.; Pérez, B.; Pumera, M.; Del Valle, M.; Merkoçi, A.; Alegret, S. Sensitive stripping voltammetry of heavy metals by using a composite sensor based on a built-in bismuth precursor. Analyst 2005, 130, 971–976. [Google Scholar] [CrossRef]
Concentration | Peak Area Reduction (%) | ||
---|---|---|---|
Interference | (μg L−1) | Cd(II) | Pb(II) |
Cu(II) | 100 | No peak | No peak |
500 | No peak | No peak | |
Ni(II) | 100 | 53.38 | 9.99 |
500 | 80.05 | 49.72 | |
NaCl | 100 | 7.94 | 21.11 |
500 | 34.27 | 43.59 | |
Benzene | 100 | 26.58 | 10.87 |
500 | 29.83 | 14.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahinting, S.E.D.; Rollon, A.P.; Garcia-Segura, S.; Garcia, V.C.C.; Ensano, B.M.B.; Abarca, R.R.M.; Yee, J.-J.; de Luna, M.D.G. Bismuth Film-Coated Gold Ultramicroelectrode Array for Simultaneous Quantification of Pb(II) and Cd(II) by Square Wave Anodic Stripping Voltammetry. Sensors 2021, 21, 1811. https://doi.org/10.3390/s21051811
Bahinting SED, Rollon AP, Garcia-Segura S, Garcia VCC, Ensano BMB, Abarca RRM, Yee J-J, de Luna MDG. Bismuth Film-Coated Gold Ultramicroelectrode Array for Simultaneous Quantification of Pb(II) and Cd(II) by Square Wave Anodic Stripping Voltammetry. Sensors. 2021; 21(5):1811. https://doi.org/10.3390/s21051811
Chicago/Turabian StyleBahinting, Sandra Enn D., Analiza P. Rollon, Sergi Garcia-Segura, Vince Carlo C. Garcia, Benny Marie B. Ensano, Ralf Ruffel M. Abarca, Jurng-Jae Yee, and Mark Daniel G. de Luna. 2021. "Bismuth Film-Coated Gold Ultramicroelectrode Array for Simultaneous Quantification of Pb(II) and Cd(II) by Square Wave Anodic Stripping Voltammetry" Sensors 21, no. 5: 1811. https://doi.org/10.3390/s21051811
APA StyleBahinting, S. E. D., Rollon, A. P., Garcia-Segura, S., Garcia, V. C. C., Ensano, B. M. B., Abarca, R. R. M., Yee, J. -J., & de Luna, M. D. G. (2021). Bismuth Film-Coated Gold Ultramicroelectrode Array for Simultaneous Quantification of Pb(II) and Cd(II) by Square Wave Anodic Stripping Voltammetry. Sensors, 21(5), 1811. https://doi.org/10.3390/s21051811