Hydrogel-Core Microstructured Polymer Optical Fibers for Selective Fiber Enhanced Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. HC-mPOF Fabrication and Modification
2.2. Alginate Hydrogel Formation in the Core of the mPOF
2.3. Experimental Set-Up
2.4. Data Processing
3. Results
3.1. HyC-mPOF Creation and Hydrogel Creation State Quantification
3.1.1. Raman Spectra Progression
3.1.2. PCA Model of the Hydrogel Creation
3.2. High and Low Affinity Molecule Detection
3.2.1. High Affinity Molecule Detection
3.2.2. Low Affinity Molecule Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Korposh, S.; Okuda, H.; Wang, T.; James, S.W.; Lee, S.-W. U-shaped evanescent wave optical fibre sensor based on a porphyrin anchored nanoassembled thin film for high sensitivity ammonia detection. Proc. SPIE Int. Soc. Opt. Eng. 2015, 9655, 1–4. [Google Scholar]
- Azkune, M.; Ruiz-Rubio, L.; Aldabaldetreku, G.; Arrospide, E.; Pérez-Álvarez, L.; Bikandi, I.; Zubia, J.; Vilas-Vilela, J.J.L. U-Shaped and Surface Functionalized Polymer Optical Fiber Probe for Glucose Detection. Sensors 2017, 18, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.; Dent, G. Modern Raman Spectroscopy—A Practical Approach; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2005; Volume 36. [Google Scholar]
- Schrader, B. Chemical Applications of Raman Spectroscopy. Angew. Chem. Int. Ed. Engl. 1973, 12, 884–908. [Google Scholar] [CrossRef]
- Calcerrada, M.; Garcia-Ruiz, C.; Gonzalez-Herraez, M. Chemical and biochemical sensing applications of microstructured optical fiber-based systems. Laser Photonics Rev. 2015, 9, 604–627. [Google Scholar] [CrossRef] [Green Version]
- Enejder, A.M.K.; Koo, T.-W.; Oh, J.; Hunter, M.; Sasic, S.; Feld, M.S.; Horowitz, G.L. Blood analysis by Raman spectroscopy. Opt. Lett. 2002, 27, 2004. [Google Scholar] [CrossRef]
- Amer, M.S. Chapter 2: Raman Spectroscopy; the Diagnostic Tool. In Raman Spectroscopy, Fullerenes and Nanotechnology; Royal Society of Chemistry: London, UK, 2010; pp. 43–108. [Google Scholar]
- Frosch, T.; Knebl, A.; Frosch, T. Recent advances in nano-photonic techniques for pharmaceutical drug monitoring with emphasis on Raman spectroscopy. Nanophotonics 2019, 9, 19–37. [Google Scholar] [CrossRef]
- Hassing, S.; JERNSHØJ, K. Benefits and challenges in applying Raman spectroscopy. Agro Food Ind. Hi Tech 2014, 25, 63–68. [Google Scholar]
- Khan, S.; Ullah, R.; Javaid, S.; Shahzad, S.; Ali, H.; Bilal, M.; Saleem, M.; Ahmed, M. Raman Spectroscopy Combined with Principal Component Analysis for Screening Nasopharyngeal Cancer in Human Blood Sera. Appl. Spectrosc. 2017, 71, 2497–2503. [Google Scholar] [CrossRef]
- Sato-Berrú, R.Y.; Mejía-Uriarte, E.V.; Frausto-Reyes, C.; Villagrán-Muniz, M.; Saniger, J.M. Application of principal component analysis and Raman spectroscopy in the analysis of polycrystalline BaTiO3 at high pressure. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 66, 557–560. [Google Scholar]
- Frosch, T.; Yan, D.; Popp, J. Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs. Anal. Chem. 2013, 85, 6264–6271. [Google Scholar] [CrossRef] [PubMed]
- Khetani, A.; Riordon, J.; Tiwari, V.; Momenpour, A.; Godin, M.; Anis, H. Hollow core photonic crystal fiber as a reusable Raman biosensor. Opt. Express 2013, 21, 12340. [Google Scholar] [CrossRef]
- Yan, D.; Popp, J.; Pletz, M.W.; Frosch, T. Fiber enhanced Raman sensing of levofloxacin by PCF bandgap-shifting into the visible range. Anal. Methods 2018, 10, 586–592. [Google Scholar] [CrossRef]
- Dinish, D.S.; Fu, C.Y.; Soh, K.S.; Ramaswamy, B.; Kumar, A.; Olivo, M. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens. Bioelectron. 2012, 33, 293–298. [Google Scholar]
- Cox, F.M.; Argyros, A.; Large, M.C.J.; Kalluri, S. Surface enhanced Raman scattering in a hollow core microstructured optical fiber. Opt. Express 2007, 15, 13675–13681. [Google Scholar] [CrossRef]
- Emiliyanov, G.; Høiby, P.E.; Pedersen, L.H.; Bang, O. Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers. Sensors 2013, 13, 3242–3251. [Google Scholar] [CrossRef] [Green Version]
- Pakarzadeh, H.; Nielsen, K.; Brunetti, A.C.; Rottwitt, K.; Zakery, A. Raman Spectra of a PMMA Microstructured Optical Fibre and Direct Measurement of Its Gain Coefficient. Int. J. Opt. Photonics 2012, 6, 67–74. [Google Scholar]
- Azkune, M.; Frosch, T.; Arrospide, E.; Aldabaldetreku, G.; Bikandi, I.; Zubia, J.; Popp, J.; Frosch, T. Liquid-Core Microstructured Polymer Optical Fiber as Fiber Enhanced Raman Spectroscopy Probe for Glucose Sensing. J. Light. Technol. 2019, 37, 2981–2988. [Google Scholar] [CrossRef]
- George, S.M.; Tandon, S.; Kandasubramanian, B. Advancements in Hydrogel-Functionalized Immunosensing Platforms. ACS Omega 2020, 5, 2060–2068. [Google Scholar] [CrossRef]
- Pérez-Álvarez, L.; Ruiz-Rubio, L.; Lizundia, E.; Vilas-Vilela, J.L. Polysaccharide-Based Superabsorbents: Synthesis, Properties, and Applications; Springer: Cham, Switzerland, 2019; pp. 1393–1431. [Google Scholar]
- Wang, W.; Wang, A. Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydr. Polym. 2010, 80, 1028–1036. [Google Scholar] [CrossRef]
- Demitri, C.; Scalera, F.; Madaghiele, M.; Sannino, A.; Maffezzoli, A. Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture. Int. J. Polym. Sci. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Buchholz, F.L.; Peppas, N.A. (Eds.) Superabsorbent Polymers; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1994; Volume 573, ISBN 0-8412-3039-0. [Google Scholar]
- Guilherme, M.R.; Reis, A.V.; Takahashi, S.H.; Rubira, A.F.; Feitosa, J.P.A.; Muniz, E.C. Synthesis of a novel superabsorbent hydrogel by copolymerization of acrylamide and cashew gum modified with glycidyl methacrylate. Carbohydr. Polym. 2005, 61, 464–471. [Google Scholar] [CrossRef]
- Liu, X.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P.C. Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Sci. Total Environ. 2013, 463–464, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Schaumlöffel, D. Nickel species: Analysis and toxic effects. J. Trace Elem. Med. Biol. 2012, 26, 1–6. [Google Scholar] [CrossRef]
- Lambert, M.; Leven, B. A New Methods of Cleaning Up Heavy Metal in Soils and Water Innovative Solutions to an Environmental Problem. In Environmental Science and Technology Briefs for Citizens; Kansas State University: Manhattan, KS, USA, 2000. [Google Scholar]
- Lv, Q.; Hu, X.; Zhang, X.; Huang, L.; Liu, Z.; Sun, G. Highly efficient removal of trace metal ions by using poly(acrylic acid) hydrogel adsorbent. Mater. Des. 2019, 181, 107934. [Google Scholar] [CrossRef]
- Milosavljević, N.B.; Ristić, M.D.; Perić-Grujić, A.A.; Filipović, J.M.; Štrbac, S.B.; Rakočević, Z.L.; Kalagasidis Krušić, M.T. Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution. Chem. Eng. J. 2010, 165, 554–562. [Google Scholar] [CrossRef]
- Agnihotri, S.; Singhal, R. Synthesis and Characterization of Novel Poly (Acrylic Acid/Sodium Alginate/Sodium Humate) Superabsorbent Hydrogels. Part II: The Effect of SH Variation on Cu2+, Pb2+, Fe2+ Metal Ions, MB, CV Dye Adsorption Study. J. Polym. Environ. 2018, 26, 383–395. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Xu, Y.; Yariv, A. Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl. Phys. Lett. 2004, 85, 5182–5184. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, K.; Noordegraaf, D.; Sørensen, T.; Bjarklev, A.; Hansen, T.P. Selective filling of photonic crystal fibres. J. Opt. A Pure Appl. Opt. 2005, 7, L13–L20. [Google Scholar] [CrossRef]
- Beleites Valter, C.S. hyperSpec: A Package to Handle Hyperspectral Data Sets in R. cran.r-project. 2018. Available online: https://cran.r-project.org/web/packages/hyperSpec/index.html (accessed on 5 March 2021).
- Liland, K.H. 4S Peak Filling—Baseline estimation by iterative mean suppression. MethodsX 2015, 2, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Liland, K.H. Baseline: Baseline Correction of Spectra. cran.r-project. 2018. Available online: https://cran.r-project.org/web/packages/baseline/index.html (accessed on 5 March 2021).
- Vivek, S.; Arunkumar, P.; Babu, K.S. In situ generated nickel on cerium oxide nanoparticle for efficient catalytic reduction of 4-nitrophenol. RSC Adv. 2016, 6, 45947–45956. [Google Scholar] [CrossRef]
- Schmid, T.; Messmer, A.; Yeo, B.S.; Zhang, W.; Zenobi, R. Towards chemical analysis of nanostructures in biofilms II: Tip-enhanced Raman spectroscopy of alginates. Anal. Bioanal. Chem. 2008, 391, 1907–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azkune, M.; Ayesta, I.; Ruiz-Rubio, L.; Arrospide, E.; Vilas-Vilela, J.L.; Zubia, J. Hydrogel-Core Microstructured Polymer Optical Fibers for Selective Fiber Enhanced Raman Spectroscopy. Sensors 2021, 21, 1845. https://doi.org/10.3390/s21051845
Azkune M, Ayesta I, Ruiz-Rubio L, Arrospide E, Vilas-Vilela JL, Zubia J. Hydrogel-Core Microstructured Polymer Optical Fibers for Selective Fiber Enhanced Raman Spectroscopy. Sensors. 2021; 21(5):1845. https://doi.org/10.3390/s21051845
Chicago/Turabian StyleAzkune, Mikel, Igor Ayesta, Leire Ruiz-Rubio, Eneko Arrospide, Jose Luis Vilas-Vilela, and Joseba Zubia. 2021. "Hydrogel-Core Microstructured Polymer Optical Fibers for Selective Fiber Enhanced Raman Spectroscopy" Sensors 21, no. 5: 1845. https://doi.org/10.3390/s21051845
APA StyleAzkune, M., Ayesta, I., Ruiz-Rubio, L., Arrospide, E., Vilas-Vilela, J. L., & Zubia, J. (2021). Hydrogel-Core Microstructured Polymer Optical Fibers for Selective Fiber Enhanced Raman Spectroscopy. Sensors, 21(5), 1845. https://doi.org/10.3390/s21051845