Wearable Sensors in Sports for Persons with Disability: A Systematic Review
Abstract
:1. Introduction
1.1. Background
1.2. Wearable Technologies in Sport
1.3. Applications of Wearable Technologies in Sport for People with Disabilities
1.4. The Aim
2. Methods and Material
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Review Process
2.4. Quality Assessment
2.5. Data Extraction
3. Results
3.1. Journal and Year of Publication
3.2. Sport, Motor Task and Setting
3.3. Participants
3.4. Sensor Types and Placements
3.5. Parameters and Applications
3.5.1. Athlete Classification
3.5.2. Injury Prevention
3.5.3. Performance Characterization for Training Optimization
3.5.4. Sports Equipment Customization
4. Discussion
4.1. General Trends and Flaws
4.2. Sensor Types and Placements
4.3. Parameters and Applications
4.3.1. Athlete Classification
4.3.2. Injury Prevention
4.3.3. Performance Characterization for Training Optimization
4.3.4. Sport Equipment Customization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
IMU | Inertial Measurement Unit |
EMG | Electromyography |
MVIC | Maximal Voluntary Isometric Contraction |
MEMS | Microelectromechanical systems |
IPC | International Paralympic Committee |
CP | Cerebral Palsy |
Appendix A. Search Strings Used to Search in Databases
Database Keywords |
---|
Scopus: TITLE-ABS-KEY ((wearab* OR acceleromet* OR gyro* OR *emg OR electromyo* OR *imu OR “inertial sensor” OR “inertial measurement unit*” OR mems OR “force sensor” OR “force transducer” OR “pressure sensor” OR (“energy expenditure” AND wearab*) OR (“heart rate” AND wearab*) OR (“oxygen consumption” AND wearab*) OR (vo2* AND wearab*)) |
AND (sport* OR “physical training” OR athlet* OR basketball OR fenc* OR rugby OR tennis OR curl* OR archery OR athletics OR badminton OR boccia OR canoe* OR bik* OR cycling OR cyclist OR equestrian OR football OR soccer OR judo OR “weight lift*” OR “power lift*” OR powerlift* OR row* OR shoot* OR swim* OR “table tennis” OR biathlon OR triathlon OR volleyball OR ski OR skiing OR hockey OR snowboard* OR taekwondo OR “martial art” OR sail* OR “track and field” OR fishing OR golf OR hiking OR hunting OR hunter OR kayak* OR paddl* OR raft* OR climb* OR scuba OR diving OR diver OR dive OR skateboard* OR snowshoe* OR “strength train*” OR surfing OR surfer OR “tai chi” OR racing OR race OR yoga OR “adaptive sport” OR running OR runner OR jog*) |
AND (disab* OR paraly* OR prosth* OR handi* OR impairment OR impaired OR amput*)) |
Web-of-Science: TS=((wearab* OR acceleromet* OR gyro* OR *emg OR electromyo* OR *imu OR “inertial sensor” OR “inertial measurement unit*” OR mems OR “force sensor” OR “force transducer” OR “pressure sensor” OR (“energy expenditure” AND wearab*) OR (“heart rate” AND wearab*) OR (“oxygen consumption” AND wearab*) OR (vo2* AND wearab*)) |
AND (sport* OR “physical training” OR athlet* OR basketball OR fenc* OR rugby OR tennis OR curl* OR archery OR athletics OR badminton OR boccia OR canoe* OR bik* OR cycling OR cyclist OR equestrian OR football OR soccer OR judo OR “weight lift*” OR “power lift*” OR powerlift* OR row* OR shoot* OR swim* OR “table tennis” OR biathlon OR triathlon OR volleyball OR ski OR skiing OR hockey OR snowboard* OR taekwondo OR “martial art” OR sail* OR “track and field” OR fishing OR golf OR hiking OR hunting OR hunter OR kayak* OR paddl* OR raft* OR climb* OR scuba OR diving OR diver OR dive OR skateboard* OR snowshoe* OR “strength train*” OR surfing OR surfer OR “tai chi” OR racing OR race OR yoga OR “adaptive sport” OR running OR runner OR jog*) |
AND (disab* OR paraly* OR prosth* OR handi* OR impairment OR impaired OR amput*)) |
EBSCO: Same as Web-of-Science |
Pubmed: ((“Electromyography”[Mesh] OR “Accelerometry”[Mesh] OR “Wearable Electronic Devices”[Mesh]) AND “Sports for Persons with Disabilities”[Mesh]) |
OR (wearab* OR acceleromet* OR gyro* OR *emg OR electromyo* OR *imu OR “inertial sensor” OR “inertial measurement unit*” OR mems OR “force sensor” OR “force transducer” OR “pressure sensor” OR (“energy expenditure” AND wearab* ) OR (“heart rate” AND wearab* ) OR (“oxygen consumption” AND wearab* ) OR ( vo2* AND wearab* ) ) |
AND (sport* OR “physical training” OR athlet* OR basketball OR fenc* OR rugby OR tennis OR curl* OR archery OR athletics OR badminton OR boccia OR canoe* OR bik* OR cycling OR cyclist OR equestrian OR football OR soccer OR judo OR “weight lift*” OR “power lift*” OR powerlift* OR row* OR shoot* OR swim* OR “table tennis” OR biathlon OR triathlon OR volleyball OR ski OR skiing OR hockey OR snowboard* OR taekwondo OR “martial art” OR sail* OR “track and field” OR fishing OR golf OR hiking OR hunting OR hunter OR kayak* OR paddl* OR raft* OR climb* OR scuba OR diving OR diver OR dive OR skateboard* OR snowshoe* OR “strength train*” OR surfing OR surfer OR “tai chi” OR racing OR race OR yoga OR “adaptive sport” OR running OR runner OR jog*) |
AND (disab* OR paraly* OR prosth* OR handi* OR impairment OR impaired OR amput*)) |
References
- International Paralympic Committee. International Paralympic Committee Annual Report 2018. Available online: https://www.paralympic.org/sites/default/files/2019-10/2018%20IPC%20Annual%20Report%202018.pdf (accessed on 7 March 2021).
- Chawla, J. ABC of sports medicine: Sport for people with disability. BMJ 1994, 308, 1500–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Te Velde, S.J.; Lankhorst, K.; Zwinkels, M.; Verschuren, O.; Takken, T.; de Groot, J. Associations of sport participation with self-perception, exercise self-efficacy and quality of life among children and adolescents with a physical disability or chronic disease—A cross-sectional study. Sports Med. Open 2018, 4, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiuppis, F. Inclusion in sport: Disability and participation. Sport Soc. 2018, 21, 4–21. [Google Scholar] [CrossRef] [Green Version]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [Green Version]
- Matsuwaka, S.T.; Latzka, E.W. Summer adaptive sports technology, equipment, and injuries. Sports Med. Arthrosc. Rev. 2019, 27, 48–55. [Google Scholar] [CrossRef]
- Burkett, B. Paralympic sports medicine—Current evidence in winter sport: Considerations in the development of equipment standards for Paralympic athletes. Clin. J. Sport Med. 2012, 22, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Johnson, W.; Syrop, I.P. Winter adaptive sports participation, injuries, and equipment. Sports. Med. Arthrosc. Rev. 2019, 27, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Van der Kruk, E.; Reijne, M. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur. J. Sport Sci. 2018, 18, 1–14. [Google Scholar] [CrossRef]
- Curran, S.; Frossard, L. Biomechanical analyses of the performance of Paralympians: From foundation to elite level. Prosthetics Orthot. Int. 2012, 36, 380–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fliess-Douer, O.; Mason, B.; Katz, L.; So, C.H. Sport and technology. In Handbook of Sports Medicine and Science: Training and Coaching the Paralympic Athlete; John Wiley and Sons: Hoboken, NJ, USA, 2016; pp. 150–171. [Google Scholar]
- Adesida, Y.; Papi, E.; McGregor, A.H. Exploring the role of wearable technology in sport kinematics and kinetics: A systematic review. Sensors 2019, 19, 1597. [Google Scholar] [CrossRef] [Green Version]
- Taborri, J.; Keogh, J.; Kos, A.; Santuz, A.; Umek, A.; Urbanczyk, C.A.; van der Kruk, E.; Rossi, S. Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview. Appl. Bionics Biomech. 2020, 2020, 2041549. [Google Scholar] [CrossRef]
- Li, R.T.; Kling, S.R.; Salata, M.J.; Cupp, S.A.; Sheehan, J.; Voos, J.E. Wearable Performance Devices in Sports Medicine. Sports Health 2016, 8, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Lynn, S.K.; Watkins, C.M.; Wong, M.A.; Balfany, K.; Feeney, D.F. Validity and Reliability of Surface Electromyography Measurements from a Wearable Athlete Performance System. J. Sports Sci. Med. 2018, 17, 205–215. [Google Scholar]
- McLaughlin, J.; King, G.; Howley, E.; Bassett, D.; Ainsworth, B. Validation of the COSMED K4 b2 portable metabolic system. Int. J. Sports Med. 2001, 22, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Mannini, A.; Intille, S.; Rosenberger, M.; Sabatini, A.; Haskell, W. Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 2013, 45, 2193–2203. [Google Scholar] [CrossRef] [Green Version]
- Mannini, A.; Trojaniello, D.; Cereatti, A.; Sabatini, A. A Machine Learning Framework for Gait Classification Using Inertial Sensors: Application to Elderly, Post-Stroke and Huntington’s Disease Patients. Sensors 2016, 16, 134. [Google Scholar] [CrossRef] [Green Version]
- Bergamini, E.; Ligorio, G.; Summa, A.; Vannozzi, G.; Cappozzo, A.; Sabatini, A. Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks. Sensors 2014, 14, 18625–18649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatini, A. Estimating Three-Dimensional Orientation of Human Body Parts by Inertial/Magnetic Sensing. Sensors 2011, 11, 1489–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merletti, R.; Muceli, S. Tutorial. Surface EMG detection in space and time: Best practices. J. Electromyogr. Kinesiol. 2019, 49, 102363. [Google Scholar] [CrossRef]
- Campanini, I.; Disselhorst-Klug, C.; Rymer, W.Z.; Merletti, R. Surface EMG in clinical assessment and neurorehabilitation: Barriers limiting its use. Front. Neurol. 2020, 11, 934. [Google Scholar] [CrossRef]
- De Luca, C.J.; Gilmore, L.D.; Kuznetsov, M.; Roy, S.H. Filtering the surface EMG signal: Movement artifact and baseline noise contamination. J. Biomech. 2010, 43, 1573–1579. [Google Scholar] [CrossRef]
- Besomi, M.; Hodges, P.W.; Clancy, E.A.; Van Dieën, J.; Hug, F.; Lowery, M.; Merletti, R.; Søgaard, K.; Wrigley, T.; Besier, T.; et al. Consensus for experimental design in electromyography (CEDE) project: Amplitude normalization matrix. J. Electromyogr. Kinesiol. 2020, 53, 102438. [Google Scholar] [CrossRef] [PubMed]
- Baum, B.S.; Li, L. Lower extremity muscle activities during cycling are influenced by load and frequency. J. Electromyogr. Kinesiol. 2003, 13, 181–190. [Google Scholar] [CrossRef]
- Micera, S.; Vannozzi, G.; Sabatini, A.; Dario, P. Improving detection of muscle activation intervals. IEEE Eng. Med. Biol. Mag. 2001, 20, 38–46. [Google Scholar] [CrossRef] [PubMed]
- International Paralympic Committee. IPC Athlete Classification Code; International Paralympic Committee: Bonn, Germany, 2015. [Google Scholar]
- Tweedy, S.; Vanlandewijck, Y. International Paralympic Committee Position Stand—Background and scientific principles of Classification in Paralympic Sport. Br. J. Sports Med. 2009. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.A.; Tuakli-Wosornu, Y.A.; Henderson, G.V.; Quinby, E.; Dicianno, B.E.; Tsang, K.; Ding, D.; Cooper, R.; Crytzer, T.M.; Koontz, A.M.; et al. Engineering and technology in wheelchair sport. Phys. Med. Rehabil. Clin. 2018, 29, 347–369. [Google Scholar] [CrossRef] [PubMed]
- Vellios, E.E.; Pinnamaneni, S.; Camp, C.L.; Dines, J. Technology Used in the Prevention and Treatment of Shoulder and Elbow Injuries in the Overhead Athlete. Curr. Rev. Musculoskelet. Med. 2020, 13, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Willy, R.W. Innovations and pitfalls in the use of wearable devices in the prevention and rehabilitation of running related injuries. Phys. Ther. Sport 2018, 29, 26–33. [Google Scholar] [CrossRef]
- De Pasquale, G.; Ruggeri, V. Sensing strategies in wearable bio-mechanical systems for medicine and sport: A review. J. Micromech. Microeng. 2019, 29, 103001. [Google Scholar] [CrossRef]
- Kiely, M.; Warrington, G.; McGoldrick, A.; Cullen, S. Physiological and Performance Monitoring in Competitive Sporting Environments: A Review for Elite Individual Sports. Strength Cond. J. 2019, 41, 62–74. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- Kmet, L.M.; Cook, L.S.; Lee, R.C. Standard Quality Assessment Criteria for Evaluating Primary Research Papers from a Variety of Fields; Alberta Heritage Foundation for Medical Research (AHFMR): Edmonton, AB, Canada, 2004. [Google Scholar] [CrossRef]
- Borel, B.; Lacroix, J.; Daviet, J.C.; Mandigout, S. Intensity level and on-court role of wheelchair rugby players during competition. J. Sports Med. Phys. Fit. 2019, 59, 387–393. [Google Scholar] [CrossRef]
- Fulton, S.K.; Pyne, D.B.; Burkett, B. Validity and reliability of kick count and rate in freestyle using inertial sensor technology. J. Sports Sci. 2009, 27, 1051–1058. [Google Scholar] [CrossRef]
- Fulton, S.K.; Pyne, D.B.; Burkett, B. Quantifying freestyle kick-count and kick-rate patterns in paralympic swimming. J. Sports Sci. 2009, 27, 1455–1461. [Google Scholar] [CrossRef]
- Fulton, S.K.; Pyne, D.; Burkett, B. Optimizing kick rate and amplitude for Paralympic swimmers via net force measures. J. Sports Sci. 2011, 29, 381–387. [Google Scholar] [CrossRef]
- Mason, B.S.; Rhodes, J.M.; Goosey-Tolfrey, V.L. Validity and Reliability of an Inertial Sensor for Wheelchair Court Sports Performance. J. Appl. Biomech. 2014, 30, 326–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Slikke, R.M.A.; Berger, M.A.M.; Bregman, D.J.J.; Veeger, H.E.J. From big data to rich data: The key features of athlete wheelchair mobility performance. J. Biomech. 2016, 49, 3340–3346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Slikke, R.M.A.; De Witte, A.M.H.; Berger, M.A.M.; Bregman, D.J.J.; Veeger, D. Wheelchair mobility performance enhancement by changing wheelchair properties: What is the effect of grip, seat height, and mass? Int. J. Sports Physiol. Perform. 2018, 13, 1050–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haydon, D.S.; Pinder, R.A.; Grimshaw, P.N.; Robertson, W.S.P. Overground-Propulsion Kinematics and Acceleration in Elite Wheelchair Rugby. Int. J. Sports Physiol. Perform. 2018, 13, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Haydon, D.S.; Pinder, R.A.; Grimshaw, P.N.; Robertson, W.S.P. Test design and individual analysis in wheelchair rugby. J. Sci. Med. Sport 2018, 21, 1262–1267. [Google Scholar] [CrossRef]
- Haydon, D.S.; Pinder, R.A.; Grimshaw, P.N.; Robertson, W.S.P. Wheelchair Rugby chair configurations: An individual, Robust design approach. Sports Biomech. 2019. [Google Scholar] [CrossRef]
- Vieira, T.; Cerone, G.L.; Gastaldi, L.; Pastorelli, S.; Oliveira, L.F.; Gazzoni, M.; Botter, A. Design and test of a biomechanical model for the estimation of knee joint angle during indoor rowing: Implications for FES-rowing protocols in paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2145–2152. [Google Scholar] [CrossRef]
- Masse, L.C.; Lamontagne, M.; O’Riain, M.D. Biomechanical analysis of wheelchair propulsion for various seating positions. J. Rehabil. Res. Dev. 1992, 29, 12–28. [Google Scholar] [CrossRef] [Green Version]
- Laschowski, B.; Mehrabi, N.; McPhee, J. Inverse dynamics modeling of paralympic wheelchair curling. J. Appl. Biomech. 2017, 33, 294–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, B.S.; van der Slikke, R.M.A.; Hutchinson, M.J.; Berger, M.A.M.; Goosey-Tolfrey, V.L. The effect of small-sided game formats on physical and technical performance in wheelchair basketball. Int. J. Sports Physiol. Perform. 2018, 13, 891–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, B.S.; van der Slikke, R.M.A.; Hutchinson, M.J.; Goosey-Tolfrey, V.L. Division, result and score margin alter the physical and technical performance of elite wheelchair tennis players. J. Sports Sci. 2020, 38, 937–944. [Google Scholar] [CrossRef]
- Barfield, J.; Newsome, L.; John, E.B.; Sallee, D.N.; Frames, C.; Soangra, R.; Malone, L. A case report of shoulder fatigue imbalance in wheelchair rugby: Implications to pain and injury. Spinal Cord Ser. Cases 2016, 2, 16002. [Google Scholar] [CrossRef] [Green Version]
- Childers, W.L.; Prilutsky, B.; Gregor, R. Motor adaptation to prosthetic cycling in people with trans-tibial amputation. J. Biomech. 2014, 47 10, 2306–2313. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.W.; Millikan, T.A.; Carlton, L.G.; Chae, W.S.; Morse, M.I. Effect of resistance load on biomechanical characteristics of racing wheelchair propulsion over a roller system. J. Biomech. 2000, 33, 601–608. [Google Scholar] [CrossRef]
- Chow, J.W.; Millikan, T.A.; Carlton, L.G.; Morse, M.I.; Chae, W.S. Biomechanical comparison of two racing wheelchair propulsion techniques. Med. Sci. Sports Exerc. 2001, 33, 476. [Google Scholar] [CrossRef] [PubMed]
- Vaíllo, R.R.; Sánchez, C.C.; Romero, A.R.; Murillo, F.D.B.; Solana, R.S. Electromechanical delay in a ball release activity with time-and non-time constrained situations performed by boccia players. Eur. J. Hum. Mov. 2015, 35, 125–136. [Google Scholar]
- Rosso, V.; Gastaldi, L.; Rapp, W.; Lindinger, S.; Vanlandewijck, Y.; Linnamo, V. Biomechanics of simulated versus natural cross-country sit skiing. J. Electromyogr. Kinesiol. 2017, 32, 15–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quittmann, O.J.; Abel, T.; Albracht, K.; Strüder, H.K. Reliability of muscular activation patterns and their alterations during incremental handcycling in able-bodied participants. Sports Biomech. 2019. [Google Scholar] [CrossRef]
- Quittmann, O.J.; Abel, T.; Albracht, K.; Meskemper, J.; Foitschik, T.; Strüder, H.K. Biomechanics of handcycling propulsion in a 30-min continuous load test at lactate threshold: Kinetics, kinematics, and muscular activity in able-bodied participants. Eur. J. Appl. Physiol. 2020, 120, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Quittmann, O.J.; Meskemper, J.; Albracht, K.; Abel, T.; Foitschik, T.; Strüder, H.K. Normalising surface EMG of ten upper-extremity muscles in handcycling: Manual resistance vs. sport-specific MVICs. J. Electromyogr. Kinesiol. 2020, 51. [Google Scholar] [CrossRef]
- Runciman, P.; Derman, W.; Ferreira, S.; Albertus-Kajee, Y.; Tucker, R. A descriptive comparison of sprint cycling performance and neuromuscular characteristics in able-bodied athletes and Paralympic athletes with cerebral palsy. Am. J. Phys. Med. Rehabil. 2015, 94, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Runciman, P.; Tucker, R.; Ferreira, S.; Albertus-Kajee, Y.; Derman, W. Effects of Induced Volitional Fatigue on Sprint and Jump Performance in Paralympic Athletes with Cerebral Palsy. Am. J. Phys. Med. Rehabil. 2016, 95, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Runciman, P.; Tucker, R.; Ferreira, S.; Albertus-Kajee, Y.; Derman, W. Paralympic athletes with cerebral palsy display altered pacing strategies in distance-deceived shuttle running trials. Scand. J. Med. Sci. Sport. 2016, 26, 1239–1248. [Google Scholar] [CrossRef]
- Sindall, P.; Lenton, J.P.; Whytock, K.; Tolfrey, K.; Oyster, M.L.; Cooper, R.A.; Goosey-Tolfrey, V.L. Criterion validity and accuracy of global positioning satellite and data logging devices for wheelchair tennis court movement. J. Spinal Cord Med. 2013, 36, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Bergamini, E.; Morelli, F.; Marchetti, F.; Vannozzi, G.; Polidori, L.; Paradisi, F.; Traballesi, M.; Cappozzo, A.; Delussu, A.S. Wheelchair Propulsion Biomechanics in Junior Basketball Players: A Method for the Evaluation of the Efficacy of a Specific Training Program. BioMed Res. Int. 2015, 2015, 275965. [Google Scholar] [CrossRef] [Green Version]
- Cain, S.M.; Ulrich, D.A.; Perkins, N.C. Using measured bicycle kinematics to quantify increased skill as a rider learns to ride abicycle. In Dynamic Systems and Control Conference; American Society of Mechanical Engineers: New York, NY, USA, 2012; Volume 45318, pp. 195–199. [Google Scholar]
- Usma-Alvarez, C.C.; Chua, J.J.C.; Fuss, F.K.; Subic, A.; Burton, M. Advanced performance analysis of the illinois agility test based on the tangential velocity and turning radius in wheelchair rugby athletes. Sports Technol. 2010, 3, 204–214. [Google Scholar] [CrossRef]
- Yusheng, Y.; Koontz, A.; Triolo, R.; Mercer, J.; Boninger, M. Surface electromyography activity of trunk muscles during wheelchair propulsion. Clin. Biomech. 2007, 21, 1032–1041. [Google Scholar] [CrossRef]
- Rosso, V.; Gastaldi, L.; Rapp, W.; Lindinger, S.; Vanlandewijck, Y.; Äyrämö, S.; Linnamo, V. Balance Perturbations as a Measurement Tool for Trunk Impairment in Cross-Country Sit Skiing. Adapt. Phys. Act. Q. APAQ 2018, 36, 61–76. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Borgesđ, M.V.; de Sousa, E.C.; Rego, J.T.P.; Medeiros, R.M.V.; Spina, M.A.; Cabral, B.G.A.T.; Dantas, P.M.S. Electromyographic analysis of bench press in paralympic athletes. Med. Sport. 2014, 10, 2452–2456. [Google Scholar]
- Faupin, A.; Gorce, P.; Watelain, E.; Meyer, C.; Thevenon, A. A Biomechanical Analysis of Handcycling: A Case Study. J. Appl. Biomech. 2010, 26, 240–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehm, J.M.; Jagodinsky, A.E.; Wilburn, C.M.; Smallwood, L.L.; Windham, J.B.; Weimar, W.H. Measuring Trunk Stability for Wheelchair Basketball Classification: A New Field Test. Clin. Kinesiol. 2019, 73, 1–7. [Google Scholar]
- Shafizadeh, M.; Theis, N.; Davids, K. Locomotor adaptations during racerunning in people with neurological motor disorders. Adapt. Phys. Act. Q. 2019, 36, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Rice, I.; Bull, T. Exploring the Influence of Wheelchair-User Interface and Personal Characteristics on Ischial Tuberosity Peak Pressure Index and Gradient in Elite Wheelchair Basketball Players. Adapt. Phys. Act. Q. 2020, 37, 56–71. [Google Scholar] [CrossRef]
- Matošková, P.; Süss, V.; Kračmar, B. Differences in the activation of selected muscles throughout a curve with the use of internal stabilizer in handicapped skiing group LW2. In Proceedings of the 9th International Conference Sport and Quality of Life 2013; Zvonař, M., Sajdlová, Z., Eds.; Masaryk University Press: Brno, Czech Republic, 2013; pp. 183–190. [Google Scholar]
- Ye, S.; Feng, S.; Huang, L.; Bian, S. Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics. Biosensors 2020, 10, 205. [Google Scholar] [CrossRef] [PubMed]
- Ray, T.; Choi, J.; Reeder, J.; Lee, S.P.; Aranyosi, A.J.; Ghaffari, R.; Rogers, J.A. Soft, skin-interfaced wearable systems for sports science and analytics. Curr. Opin. Biomed. Eng. 2019, 9, 47–56. [Google Scholar] [CrossRef]
- Fagher, K.; Lexell, J. Sports-related injuries in athletes with disabilities. Scand. J. Med. Sci. Sports 2014, 24, e320–e331. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; de Oliveira Capanema, D.; de Souza, T.V.; Serrão, J.C.; Pereira, A.C.M.; Nassis, G.P. Current approaches to the use of artificial intelligence for injury risk assessment and performance prediction in team sports: A systematic review. Sports Med. Open 2019, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehghansai, N.; Lemez, S.; Wattie, N.; Baker, J. A Systematic Review of Influences on Development of Athletes With Disabilities. Adapt. Phys. Act. Q. 2017, 34, 72–90. [Google Scholar] [CrossRef]
- Paulson, T.; Goosey-Tolfrey, V. Current Perspectives on Profiling and Enhancing Wheelchair Court Sport Performance. Int. J. Sports Physiol. Perform. 2017, 12, 275–286. [Google Scholar] [CrossRef] [PubMed]
Criteria: | Definition: |
---|---|
Measurements | If wearable:
|
Motor tasks | Included:
|
Cohorts | Included:
|
Type of assessment | Included:
|
Sports | |
---|---|
Wheelchair basketball | 6 |
Wheelchair rugby | 6 |
Wheelchair racing | 5 |
Running | 4 |
Handcycling | 4 |
Swimming | 3 |
Cross-country sit-ski | 2 |
Wheelchair tennis | 2 |
Cycling | 2 |
Rowing | 1 |
Paralimpic weightlifting | 1 |
Wheelchair curling | 1 |
Boccia | 1 |
Downhill skiing | 1 |
Sport-Related Movement | Sensor Type | Parameter | AC | IP | PC | EC | Reference |
---|---|---|---|---|---|---|---|
Wheelchair propulsion | Inertial sensors | Bilateral symmetry of acceleration Push cycle duration Progression force Push cycle frequency Cycle variation of parameters | √ | [64] | |||
Peak linear acceleration | √ | [43,44] | |||||
Angular velocity of wheel | √ | [40] | |||||
EMG | Muscle activation pattern in shoulder and arm muscles | √ | [47] | ||||
Muscular activation pattern in back and abdominal muscles | √ | [67] | |||||
Mean EMG amplitude Peak EMG amplitude in arm muscles | √ | [53] | |||||
Mean EMG amplitude for different stroke phases and whole cycle in arm and back muscles | √ | [54] | |||||
Interface pressure mat | Pressure peak Pressure gradient | √ | √ | [73] | |||
Wheelchair agility | Inertial sensors | 22 kinematic outcomes related to linear and rotational speeds. Reduced to the 6 most important: (1) Mean of the five best rotational speeds in a turn; (2) Mean rotational acceleration; (3) Mean forward acceleration form first 2 m from standstill; (4) Mean forward speed; (5) Mean rotational speed in a curve; (6) Mean of five best forward speeds. | √ | √ | [41,42,45] | ||
Instantaneous turning radius Tangential velocity | √ | [66] | |||||
Wheelchair rugby gameplay | Inertial sensors | Energy expenditure Intensity level Physical activity time | √ | [36] | |||
EMG | Muscular activation pattern in deltoids and pectoralis | √ | [51] | ||||
Wheelchair basketball gameplay | Inertial sensors | Wheelchair frame rotation and acceleration | √ | [49] | |||
Wheelchair tennis gameplay | Inertial sensors | Wheelchair mean acceleration rotational velocity and acceleration | √ | [50] | |||
GPS with accelerometer | Speed Distance | √ | [63] | ||||
Hand cycling | EMG | Integrated EMG | √ | [57] | |||
EMG onset and offset EMG amplitude in upper body muscles | √ | [57,58] | |||||
Peak EMG amplitude in upper body muscles | √ | [59] | |||||
Percentage of muscular activation in arm and back muscles | √ | √ | [70] | ||||
Cycling | Inertial sensors | Peak cross-correlation between roll angular velocity and steering rate | √ | [65] | |||
Force sensors | Pedal reaction force | √ | [52] | ||||
EMG | EMG onset and offset | √ | |||||
Wheelchair curling draw shot delivery | Inertial sensors | Angular displacement and velocity of shoulder, elbow wrist and hip | √ | [48] | |||
Goniometers | Range of motion of shoulder, elbow wrist and hip | √ | |||||
Poling (Sit-ski) | Inertial sensors | Trunk range of motion | √ | [68] | |||
Force sensors | Force production | √ | √ | [56,68] | |||
EMG | Peak EMG amplitude Mean EMG amplitude in upper limbs | √ | [56] | ||||
Turning (Downhill skiing) | EMG | Muscular activation pattern in glute, thigh and leg | √ | [74] | |||
Benchpress | EMG | Percentage of muscle activation in upper body muscles | √ | [69] | |||
Force sensors | Anterior force Posterior force Ratio between them | √ | [68] | ||||
Running | EMG | Mean EMG amplitude in leg and lower back muscles | √ | [60,61] | |||
Peak EMG amplitude in leg and lower back muscles | √ | [62] | |||||
Inertial sensors | Peak impact acceleration at tibia and head | √ | [72] | ||||
Vertical jump | EMG | Mean EMG amplitude in leg and lower back muscles | √ | [61] | |||
Throwing a ball | EMG | Electromecanical delay | √ | [55] | |||
Swimming | Inertial sensors | Kick rate Kick amplitude | √ | [37,38,39] | |||
Force sensors | Net force | √ | [39] | ||||
Rowing | Inertial sensors | Knee angle | √ | [46] | |||
Upper body pushing force exertion (Wheelchair basketball) | Force sensors | Exerted force | √ | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rum, L.; Sten, O.; Vendrame, E.; Belluscio, V.; Camomilla, V.; Vannozzi, G.; Truppa, L.; Notarantonio, M.; Sciarra, T.; Lazich, A.; et al. Wearable Sensors in Sports for Persons with Disability: A Systematic Review. Sensors 2021, 21, 1858. https://doi.org/10.3390/s21051858
Rum L, Sten O, Vendrame E, Belluscio V, Camomilla V, Vannozzi G, Truppa L, Notarantonio M, Sciarra T, Lazich A, et al. Wearable Sensors in Sports for Persons with Disability: A Systematic Review. Sensors. 2021; 21(5):1858. https://doi.org/10.3390/s21051858
Chicago/Turabian StyleRum, Lorenzo, Oscar Sten, Eleonora Vendrame, Valeria Belluscio, Valentina Camomilla, Giuseppe Vannozzi, Luigi Truppa, Marco Notarantonio, Tommaso Sciarra, Aldo Lazich, and et al. 2021. "Wearable Sensors in Sports for Persons with Disability: A Systematic Review" Sensors 21, no. 5: 1858. https://doi.org/10.3390/s21051858
APA StyleRum, L., Sten, O., Vendrame, E., Belluscio, V., Camomilla, V., Vannozzi, G., Truppa, L., Notarantonio, M., Sciarra, T., Lazich, A., Mannini, A., & Bergamini, E. (2021). Wearable Sensors in Sports for Persons with Disability: A Systematic Review. Sensors, 21(5), 1858. https://doi.org/10.3390/s21051858