A High-Accuracy and Power-Efficient Self-Optimizing Wireless Water Level Monitoring IoT Device for Smart City
Abstract
:1. Introduction
2. Methodology
2.1. Multi-Step Measurement Mechanism
2.2. Power Self-Optimizing Process
3. Experiment
3.1. Simulation of Multi-Step Measurement
3.2. Efficiency of Power Self-Optimizing Process
Algorithm 1: Period of computation of power self-optimizing process |
Input: Battery level, Charging current Output: Transmission period Period = 10; IncreaseLevel = 30; DecreaseLevel = 10; MaxPeriod = 120; MultistepOperationTime = 10; SafetyLevel = 80%; = 1; |
repeat |
if Battery level ≥ SafetyLevel then // select state according to battery level NextState = 1; else NextState = 0; endif ; // calculate total power if NextState = 1 then // decide period if then Period = Period + IncreaseLevel; if Period >= MaxPeriod then Period = MaxPeriod; endif else Period = Period − DecreaseLevel; if Period < MultistepOperationTime then Period = MultistepOperationTime; endif endif |
endif |
4. Experimental Results and Device Implementation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.-L.; Lee, H.-Y.; Chen, C.-A.; Huang, H.-Y.; Luo, C.-H. Wireless Body Sensor Network with Adaptive Low-Power Design for Biometrics and Healthcare Applications. IEEE Syst. J. 2009, 3, 398–409. [Google Scholar] [CrossRef]
- Nam, T.; Pardo, T.A. Conceptualizing Smart City with Dimensions of Technology, People, and Institutions. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, College Park, MD, USA, 12–15 June 2011; pp. 282–291. [Google Scholar]
- Su, K.; Li, J.; Fu, H. Smart City and the Applications. In Proceedings of the International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 1028–1031. [Google Scholar]
- Rhee, S. Catalyzing the Internet of Things and Smart Cities: Global City Teams Challenge. In Proceedings of the 2016 1st International Workshop on Science of Smart City Operations and Platforms Engineering (SCOPE) in partnership with Global City Teams Challenge (GCTC), Vienna, Austria, 11 April 2016; pp. 1–4. [Google Scholar]
- Du, R.; Santi, P.; Xiao, M.; Vasilakos, A.V.; Fischione, C. The Sensable City: A Survey on the Deployment and Management for Smart City Monitoring. IEEE Commun. Surv. Tutor. 2019, 21, 1533–1560. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Almalki, F.A. Survey on Collaborative Smart Drones and Internet of Things for Improving Smartness of Smart Cities. IEEE Access 2019, 7, 128125–128152. [Google Scholar] [CrossRef]
- Santos, P.M.; Rodrigues, J.G.P.; Cruz, S.B.; Lourenço, T.; d’Orey, P.M.; Luis, Y.; Rocha, C.; Sousa, S.; Crisóstomo, S.; Queirós, C.; et al. PortoLivingLab: An IoT-Based Sensing Platform for Smart Cities. IEEE Internet Things J. 2018, 5, 523–532. [Google Scholar] [CrossRef]
- Ajchariyavanich, C.; Limpisthira, T.; Chanjarasvichai, N.; Jareonwatanan, T.; Phongphanpanya, W.; Wareechuensuk, S.; Srichareonkul, S.; Tachatanitanont, S.; Ratanamahatana, C.; Prompoon, N.; et al. Park King: An IoT-based Smart Parking System. In Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco, 14–17 October 2019; pp. 729–734. [Google Scholar]
- Duangsuwan, S.; Takarn, A.; Nujankaew, R.; Jamjareegulgarn, P. A Study of Air Pollution Smart Sensors LPWAN via NB-IoT for Thailand Smart Cities 4.0. In Proceedings of the 2018 10th International Conference on Knowledge and Smart Technology (KST), Chiangmai, Thailand, 31 January–3 February 2018; pp. 206–209. [Google Scholar]
- Pradhan, M.A.; Patankar, S.; Shinde, A.; Shivarkar, V.; Phadatare, P. IoT for smart city: Improvising smart environment. In Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017; pp. 2003–2006. [Google Scholar]
- Nirde, K.; Mulay, P.S.; Chaskar, U.M. IoT based solid waste management system for smart city. In Proceedings of the 2017 International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 15–16 June 2017; pp. 666–669. [Google Scholar]
- Kossonon, B.E.; Wang, H.Y. In Proceedings of the 4th International Conference on Smart and Sustainable City (ICSSC 2017), Shanghai, China, 5–6 June 2017; pp. 1–6.
- Ouerhani, N.; Pazos, N.; Aeberli, M.; Muller, M. IoT-based dynamic street light control for smart cities use cases. In Proceedings of the 2016 International Symposium on Networks, Computers and Communications (ISNCC), Yasmine Hammamet, Tunisia, 11–13 May 2016; pp. 1–5. [Google Scholar]
- Xiao, W.-D.; Wu, J.-K.; Xie, L.-H.; Liang, D. Sensor Scheduling for Target Tracking in Networks of Active Sensors. Acta Autom. Sin. 2006, 32, 922–928. [Google Scholar]
- Song, B.; Xiao, W.; Zhang, Z. Multi-step Sensor Scheduling for Energy-Efficient High-Accuracy Collaborative Target Tracking in Wireless Sensor Networks. In Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August 2013; pp. 1341–1345. [Google Scholar]
- Kolozali, Ş.; Bermudez-Edo, M.; Farajidavar, N.; Barnaghi, P.; Gao, F.; Ali, M.I.; Mileo, A.; Fischer, M.; Iggena, T.; Kuemper, D.; et al. Observing the Pulse of a City: A Smart City Framework for Real-Time Discovery, Federation, and Aggregation of Data Streams. IEEE Internet Things J. 2019, 6, 2651–2668. [Google Scholar] [CrossRef] [Green Version]
- Morello, R.; Mukhopadhyay, S.C.; Liu, Z.; Slomovitz, D.; Samantaray, S.R. Advances on Sensing Technologies for Smart Cities and Power Grids: A Review. IEEE Sens. J. 2017, 17, 7596–7610. [Google Scholar] [CrossRef]
- Chen, C.-A.; Wu, C.; Abu, P.; Chen, S.-L. VLSI Implementation of an Efficient Lossless EEG Compression Design for Wireless Body Area Network. Appl. Sci. 2018, 8, 1474. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-L.; Tuan, M.-C.; Lee, H.-Y.; Lin, T.-L. VLSI Implementation of a Cost-Efficient Micro Control Unit with an Asymmetric Encryption for Wireless Body Sensor Networks. IEEE Access 2017, 5, 4077–4086. [Google Scholar] [CrossRef]
- Chen, C.-A.; Chen, S.-L.; Huang, H.-Y.; Luo, C.-H. An Asynchronous Multi-Sensor Micro Control Unit for Wireless Body Sensor Networks (WBSNs). Sensors 2011, 11, 7022–7036. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-A.; Chen, S.-L.; Huang, H.-Y.; Luo, C.-H. An Efficient Micro Control Unit with a Reconfigurable Filter Design for Wireless Body Sensor Networks (WBSNs). Sensors 2012, 12, 16211–16227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.-H.; Zhang, W.; Guan, M.-H.; Jiang, S.-Y.; Fan, M.-H.; Abu, P.; Chen, S.-L. A Low-Power High-Data-Transmission Multi-lead ECG Acquisition Sensor System. Sensors 2019, 19, 4996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.-L. A Power-Efficient Adaptive Fuzzy Resolution Control System for Wireless Body Sensor Networks. IEEE Access 2015, 3, 743–751. [Google Scholar] [CrossRef]
- Mousavi, N.; Aksanli, B.; Akyurek, A.S.; Rosing, T.S. Accuracy-resource tradeoff for edge devices in Internet of Things. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; pp. 581–586. [Google Scholar]
- Imtiaz, S.A.; Logesparan, L.; Rodriguez-Villegas, E. Performance-Power Consumption Tradeoff in Wearable Epilepsy Monitoring Systems. IEEE J. Biomed. Health Inform. 2015, 19, 1019–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.; Gao, W.; Liu, Y.; Wang, B.; Zhao, H. An Adaptive Multi-Homogeneous Sensor Weight Calculation Method for Body Sensor Networks. IEEE Access 2019, 7, 121629–121644. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Udgata, S.K. A Novel ANN-Based Adaptive Ultrasonic Measurement System for Accurate Water Level Monitoring. IEEE Trans. Instrum. Meas. 2020, 69, 3359–3369. [Google Scholar] [CrossRef]
- Blaauw, D.; Sylvester, D.; Dutta, P.; Lee, Y.; Lee, I.; Bang, S.; Kim, Y.; Kim, G.; Pannuto, P.; Kuo, Y.-S.; et al. IoT design space challenges: Circuits and systems. In Proceedings of the 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, HI, USA, 9–12 June 2014; pp. 1–2. [Google Scholar]
Single Sensor | Multiple Sensors | |
---|---|---|
Cost | One device | N devices |
ID size | Considering one sensor | Larger, considering multi-sensors |
Maintenance | One device | Multiple devices |
Scalability | High | Limited |
Estimated Distance (cm) | Maximum Deviation (cm) | Percentage |
---|---|---|
100 | 0.8 | 0.8% |
150 | 1.2 | 0.8% |
200 | 1.6 | 0.8% |
350 | 1.8 | 0.51% |
400 | 2.6 | 0.65% |
500 | 3.4 | 0.68% |
Estimated Distance (cm) | Multi-Step Measurement Setup | Deviation | Result with Single-Step Measurement | Result with Multi-Step Measurement | Improved Efficiency of Accuracy |
---|---|---|---|---|---|
100 | Move 5 cm 5 times | 1% | 100.01 | 100.00 | 0.014% |
150 | 1% | 150.03 | 150.00 | 0.021% | |
200 | 1% | 200.02 | 200.01 | 0.006% | |
350 | 1% | 349.97 | 349.99 | 0.005% | |
400 | 1% | 400.08 | 399.99 | 0.022% | |
500 | 1% | 499.96 | 499.99 | 0.006% | |
100 | 2% | 99.98 | 100.00 | 0.015% | |
100 | 3% | 100.03 | 99.99 | 0.035% | |
100 | 5% | 100.10 | 100.05 | 0.043% |
Estimated Distance (cm) | Multi-Step Measurement Setup | Deviation | Result with Single-Step Measurement | Result with Multi-Step Measurement | Improved Efficiency of Accuracy |
---|---|---|---|---|---|
100 | Move 5 cm 5 times | 0.8% | 99.98 | 99.99 | 0.015% |
150 | 0.8% | 150.03 | 150.00 | 0.021% | |
200 | 0.8% | 200.03 | 200.02 | 0.003% | |
350 | 0.51% | 349.99 | 350.00 | 0.003% | |
400 | 0.65% | 399.95 | 400.03 | 0.021% | |
500 | 0.68% | 500.03 | 500.01 | 0.005% |
Items | Specification |
---|---|
Battery capacity | 3000 mAh |
Charging current | 0~385 mA |
Motor driving current | 135 mA |
Motor startup current | 337.5 mA |
System current | 125 mA |
System operating frequency | 1 Hz |
Transmission current | 1.26 mA |
Multi-step measurement operating time | 10 s |
Maximum transmission period | 120 s |
Estimated Distance (cm) | Multi-Step Measurement Setup | Result with Single-Step Measurement | Result with Multi-Step Measurement | Improved Efficiency of Accuracy |
---|---|---|---|---|
50 | Move 3 cm 5 times | 49.8 | 49.88 | 0.16% |
100 | 99.4 | 99.57 | 0.17% | |
150 | Move 5 cm 5 times | 149.7 | 150.16 | 0.31% |
200 | 198.0 | 198.78 | 0.39% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, T.-K.; Chen, H.-C.; Chen, S.-L.; Abu, P.A.R. A High-Accuracy and Power-Efficient Self-Optimizing Wireless Water Level Monitoring IoT Device for Smart City. Sensors 2021, 21, 1936. https://doi.org/10.3390/s21061936
Chi T-K, Chen H-C, Chen S-L, Abu PAR. A High-Accuracy and Power-Efficient Self-Optimizing Wireless Water Level Monitoring IoT Device for Smart City. Sensors. 2021; 21(6):1936. https://doi.org/10.3390/s21061936
Chicago/Turabian StyleChi, Tsun-Kuang, Hsiao-Chi Chen, Shih-Lun Chen, and Patricia Angela R. Abu. 2021. "A High-Accuracy and Power-Efficient Self-Optimizing Wireless Water Level Monitoring IoT Device for Smart City" Sensors 21, no. 6: 1936. https://doi.org/10.3390/s21061936